EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

A distributed safety mechanism for autonomous vehicle software using hypervisors

van der Perk, P.J.

Award date:
2019

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentthesis/a-distributed-safety-mechanism-for-autonomous-vehicle-software-using-hypervisors(952f747b-2ee3-462e-a551-e8958a05921a).html

TU/e 25 N

Department of Electrical Engineering
Electronic Systems Research Group

A Distributed Safety
Mechanism for Autonomous

Vehicle Software Using
Hypervisors

graduation project

Peter van der Perk

Supervisors:
prof.dr. Kees Goossens

dr. Andrei Terechko
version 1.0

Eindhoven, June 2019

Abstract

Autonomous vehicles rely on cyber-physical systems to provide comfort and safety to the passen-
gers. The objective of safety designs is to avoid unacceptable risk of physical injury to people.
Reaching this objective, however, is very challenging because of the growing complexity of both the
Electronic Control Units (ECUs) and software architectures required for autonomous operation.

The thesis begins with an extensive survey of state-of-the-art safety concepts and software
architectures for autonomous driving systems. Based on this survey we identified three system
design challenges: fault handling in distributed processes, hazardous road situations in the absence
of faults and freedom from interference in ECUs consolidating multiple functions.

Inspired by the E-Gas concept of distributed health monitoring, we split our safety mechanism
into function, platform, and vehicle levels, which we run on different processors. For the software
middleware to enable communication between distributed processors, we chose the Data Distri-
bution Service (DDS) protocol, which is deployed in safety-critical applications across industries.
At present safety cores are not capable to run the full DDS stack, however, there exists a DDS
subset - DDS-XRCE specially designed for resource-constrained devices. We ported DDS-XRCE
onto NXP S32R274 SoC, which is ready for the highest automotive safety integrity level, to enable
this processor’s participation in the safety mechanism. Remarkably, the DDS middleware exposes
the application software state, which safety mechanisms can use to identify hazardous situations
in the absence of faults.

Freedom from interference between multiple software stacks is supported by modern processors
through hardware virtualization and hypervisors. In our study, we chose the Xen hypervisor, which
can host and isolate multiple operating systems on top of it. Using Xen on NXP S32V234 ASIL
B capable SoC (System-on-a-Chip) we instantiated two domains - one for vehicle control and one
for health monitoring.

To validate the concepts of our safety mechanism, we built an experimental setup using the
LG SVL simulator and Baidu Apollo software framework on the NXP BlueBox platform for
autonomous driving. A take-over driving scenario was developed using the Python API of the
LG SVL simulator to ensure reproducible and deterministic analysis of the safety mechanism. To
validate our safety mechanism as part of this scenario, we programmatically injected a fault - a
high CPU load in the software stack responsible for vehicle control in the target BlueBox system.

Based on our fault injection experiment, we concluded that safety mechanisms for distributed
processing can rely on the DDS middleware. In our implementation, the middleware also enables
resource-constrained safety cores to read application state, which in the future can be used to
identify hazardous road situations in the absence of faults. Furthermore, we discovered that the
hypervisors are not only useful in ensuring freedom from interference, but they can also implement
a fail-silent behavior of faulty software stacks. In the final chapter, we listed promising future
research directions, including the challenge-response mechanism in distributed health monitoring
and a study of the non-atomic nature of the hypervisor-based software pause in a complex SoC.

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors iii

Acknowledgements

This master project is conducted in the Systems and Applications group of NXP Semiconductors,
Eindhoven. Throughout this research, I have received a great deal of support and assistance.

I would like to express the deepest appreciation to my supervisor Andrei Terechko, for giving me
the opportunity to conduct my research and further my thesis at NXP Semiconductors. During my
research, you have guided me through the wonderful world of functional safety, the automotive
industry, and embedded systems. Your expert guidance and tremendous experience in these
domains, has helped me to develop and improve my skills, both technical and non-technical. You
have provided me invaluable encouragement and support in various ways. I am really indebted to
you more than you know.

I would like to thank my university supervisor, Kees Goossens. During our meetings you have
provided me with valuable feedback during the course my of research. Focusing on the academic
aspect of my research and pinpointing valuable topics.

I would like to show my greatest appreciation to the colleagues of the Systems and Applications
group at NXP Semiconductors in particular: Yuting Fu, thank you for your critical comments
during our brainstorm sessions providing value feedback. Bart Vermeulen, thank your for joining
some meetings and providing your expertise and suggestions.

I appreciate the feedback offered by Tjerk Bijlsma from TNO-ESI, Your expertise from the
EcoTwin project and great understanding of functional safety, provided valuable input for my
research.

Finally, I wish to express my thanks and gratitude to my parents, brothers, and grandparents
for believing in me and being with moral support. In particular, I would like to thank my mo-
mther, Yke van der Perk, without her proper guidance and encouragement it would have been
impossible for me to complete my Master’s degree.

Peter van der Perk
Eindhoven, the Netherlands
June 2019

iv A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

Glossary

ADAS Advanced Driver Assistance Systems. 3, 12

ASIL Automotive Safety Integrity Level. 11, 14, 15, 21
CAN Controller Area Network. 20

DDS Data Distribution Service. 11, 21, 22, 26, 30, 34-36

DDS-TSN DDS for Time-Sensitive Networking. 11

DDS-XRCE DDS for eXtremely Resource Constrained Environments. 11, 21, 26, 34-36
DSM Distributed Safety Mechanism. 22, 23, 30

ECU Electronic Control Unit. 1, 18, 22

fault tolerance property of a system to continue operating properly in the event of one or more
faults [39]. 4

FCCU Fault Collection and Control Unit. 26

freedom from interference absence of cascading failures between two or more elements that
could lead to the violation of a safety requirement [39]. 24, 36

GNSS Global Navigation Satellite System. 3, 4

HAD Highly Automated Driving. 2-5, 8, 16, 17, 20, 22, 24-28, 30, 31, 33, 34, 36

hypervisor A hypervisor or virtual machine monitor is computer software, firmware or hardware
that creates and runs virtual machines [82]. 12-15

LiDAR Light Detection And Ranging. 4, 16

ROS Robot Operating System. 4, 5, 11, 20, 21, 30
RTOS Real-Time Operating System. 11, 12, 14, 15

SAE Society of Automotive Engineers. 3
SoC System-on-Chip. 16, 24-26, 30, 31, 33, 37

SOTIF ISO/PAS 21448, Road vehicles — Safety of the intended functionality. Standard draft. 7,
8, 18, 26, 35, 37

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors v

Contents

Contents
List of Figures
List of Tables

1 Introduction
1.1 Research context e e e e e
1.2 Thesis outline e

2 State of the art overview
2.1 Highly Automated Driving (HAD) application.
2.1.1 HAD software frameworks
2.1.2 Feature analysis of HAD software frameworks
2.1.3 Fault tolerance in HAD software frameworks
2.2 Safety standards and concepts
2.2.1 Fault models and monitoring techniques
2.2.2 Device reliability L
2.2.3 1ISO 26262 Road Vehicles - Functional safety
2.2.4 TISO/PAS 21448 Road Vehicles - Safety of the intended functionality
2.2.5 Security and safety L
2.2.6 Safety mechanisms and processes oL
2.2.7 Scoping diagram of safety frameworks
2.3 Software middleware L
2.3.1 Robot Operating System (ROS)
2.3.2 Data Distribution Service (DDS)
2.4 Operating Systems Lo e
2.4.1 Xenomai: Time-critical applications on a Linux-based platform
2.4.2 Operating-system-level virtualization
2.4.3 Hardware virtualization L 0oL
2.4.4 Siemens Jailhouse: Linux-based partitioning hypervisor
2.4.5 Green Hills INTEGRITY RTOS and Multivisor hypervisor
2.4.6 QNX Neutrino RTOS and hypervisor
2.5 Automotive hardware L

3 Problem statement

4 Research methodology

vi

viii

ix

_ =

CO 00 00 =1 =1 =1 UL UL = = W w N

11

vi A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

CONTENTS

5 Safety Mechanism Design

5.1 Software design goals L oL oL
5.2 Communication interfaces
5.3 Distributed Safety Mechanism Architecture
5.3.1 Apollo HAD software framework
5.3.2 Inter-SoC partitioning of the HAD framework
5.3.3 Intra-SoC partitioning using a hypervisor
5.3.4 Distributed health monitors
5.3.5 Distributed safety mechanism

6 Experimental evaluation of the safety mechanism
6.1 Comparison of AD simulators for End-to-End verification

6.2 Experimentalsetup
6.3 Performance characteristics of experimental setup

6.3.1 Apollo HAD framework bandwidth

6.3.2 End-to-End latency between DSM components
6.4 Safety scenarioso oo
6.5 Fault injection experimento
6.6 Experiment analysis 0.

7 Conclusion
8 Future work

Bibliography

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors vii

List of Figures

2.1 Dependency graph of state of the art elements. 2
2.2 SAE automation levels [69] 3
2.3 HAD framework functional architecture 3
2.4 Software fault models Lo 6
2.5 Safety laws, standards and conceptso Lo L 10
2.6 ARMv8 Exception Levels. 13
2.7 Memory virtualization oL L L 13
2.8 Extended hypervisor kernel classification 14
2.9 Siemens Jailhouse partitioning concept oL oL oL 14
2.10 Sense, think and act categories of automotive electronics [91] 15
2.11 Hypothetical in-vehicle network for a autonomous car 16
2.12 NXP BlueBox HAD prototyping platform 17
2.13 NXP BlueBox internals 17
5.1 DDS-XRCE clients communicating through DDS-XRCE agent [54] 21
5.2 E-Gasconcept [89] e 22
5.3 DSMconcept 22
5.4 DSM concept on NXP BlueBox oL 23
5.5 Xen network para-virtualization Lo o 0oL 25
6.1 Experimental setup 28
6.2 Distributed Safety Mechanism for Evaluation 29
6.3 Apollo 3.0 component bandwidth and message rates 30
6.4 DDS & DDS-XRCE End-to-End latency 31
6.5 Safety traffic scenario 33
6.6 Safe-stop sequence diagram 34
viii A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

List of Tables

2.1
2.2

5.1

5.2

6.1
6.2

HAD framework overview. Lo 5
Monitoring techniques Lo 7
Comparision between E-Gas components and distributed safety mechanism com-

PONENtS. e e e e e e e e e e e e 22
Hypervisor comparison. L e 25
Evaluation methods for testing automotive software 27
AD Simulator feature comparison 28

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors ix

Chapter 1

Introduction

1.1 Research context

Modern automotive system development focuses on improving safety and comfort of the passen-
gers. According to [66] the majority of car accidents are attributed to human errors. Therefore,
autonomous vehicles or self-driving cars embark on automating the basic driving functionality
and replacing the human driver with electronics and software. One of the key challenges, however,
is to design an autonomous driving system that is to be considered safer than human drivers.
Guaranteeing safety of an autonomous vehicle is challenging because of the growing complexity
of both the Electronic Control Unit (ECU) and software architectures required for autonomous
operation. The automotive industry has a long history of dealing with mechanical and hardware
problems, but the rapid expansion of software in the car poses new challenges to the automotive
safety community. According to [51] a modern vehicle runs on millions lines of code, even without
achieving fully autonomous operation. This research analyzes software for future autonomous
vehicles and empirically studies promising safety mechanisms.

1.2 Thesis outline

The thesis begins with an extensive state-of-the-art survey in Chapter 2. Following traditional
safety standards practices, we begin this chapter with the description of the application func-
tionality of the autonomous vehicles, followed by a survey of state-of-the-art safety concepts and
standards. Chapter 2 ends with a presentation of a representative automotive hardware platform.
Based on the state-of-the-art study, Chapter 3 formulates the tackled research problem in the
context of autonomous driving, followed by Chapter 4 with a definition of the research methodo-
logy relying on empirical studies. Software design goals derived from the problem statement begin
Chapter 5, which subsequently details promising elements of a distributed software architecture
of the safety mechanism. Chapter 6 is dedicated to the experimental evaluation of the designed
safety mechanism, which is validated using a fault injection in a simulated driving scenario. Based
on the experimental results we conclude our study in Chapter 7 by summarizing how adequate the
explored safety mechanisms appear to be for the formulated problem. Interesting future research
directions wrap up the thesis in Chapter 8.

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 1

Chapter 2

State of the art overview

Full self-driving automation brings the need for new techniques in design, implementation, and
safety of software [56]. Figure 2.1 shows the dependency graph of the elements presented in this
chapter, which are required for the distributed safety mechanism. The components colored in
gray are out of scope in this study. First, Section 2.1 introduces architectural concepts of Highly
Automated Driving (HAD) function software frameworks. This chapter presents a state of the
art overview of safety concepts in section 2.2. In section 2.3 we present the concept of software
middleware that provides services and communication for distributed applications. In section 2.4
we present operating systems for running the applications. Finally, in section 2.5 we present
automotive hardware platforms for running the whole software stack.

>
: - Out of scope a
HAD function Safety concepts . 3
Required o
component -
Society Human System Component
scope scope scope scope
Middleware Hardware
h 4 o
S
Apollo Xen & Linux NXP BlueBox %
o

Figure 2.1: Dependency graph of state of the art elements

2 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

CHAPTER 2. STATE OF THE ART OVERVIEW

2.1 Highly Automated Driving (HAD) application

To categorize Highly Automated Driving (HAD) capabilities, consider the automation level clas-
sification proposed by Society of Automotive Engineers ranking the automation capabilities from
level 0 through level 5 [69]. On level 1-2 automation systems are called Advanced Driver Assistance
Systems which assists the drivers, but monitoring is still done by driver, whereas in level 3-5 the
automated vehicle monitors the environment. The focus of this study is on level 3-5 automation.

Q Q QO Q
7

Level 0 Level 1 Level 2 Level 3
No automation Driver assistance Partial automation Conditional

automation
Driver still performs Vehicle has automated Car monitors
driving task, but the features, such as environment and

Level 4 Level 5

High automation Full automation

Car monitors Car monitors
environment and environment and
performs driving tasks performs driving tasks
under certain conditions. under all conditions.
The driver may have to The driver may have to
control the vehicle control the vehicle

Zero autonomy; the
driver performs all
driving tasks

vehicle includes some adaptive cruise control performs driving tasks.
driving assists features and automatic steering. The driver has to be
But the driver must ready to take over the
remain engaged with vehicle at all times
driving tasks with notice

Source: SAE International

Figure 2.2: SAE automation levels [69]

2.1.1 HAD software frameworks

A HAD software framework consists of a set of self-driving modules composed of localization, per-
ception, prediction, planning, and control capabilities. Figure 2.3 illustrates a simplified relation
between different modules.

Localization

For car navigation, Global Navigation Satellite System (GNSS) is sufficient to localize the car and
plan a route to drive. However, for self-driving cars GNSS accuracy of 5 meters and an update

Perception

(())< I

Localization —| Prediction — Planning [— Control

HMI - Maos
Navigation p

Figure 2.3: HAD framework functional architecture

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 3

CHAPTER 2. STATE OF THE ART OVERVIEW

rate of 1hz is not sufficient. Therefore, HAD frameworks use sensor fusion with other sensors such
as LIDAR, Odometry, and Cameras to achieve accuracy of lem and higher update rates.

Perception

Is detection and classification of surrounding objects using sensor fusion of the following sensors;
LiDAR, Radar, Camera and Ultrasonic. Objects will be used classified as cars, cyclists, pedestrians
and other road users.

Prediction

The perception module receives the classified objects from the perceptions module and tries to
predict the next location in time of these objects. Which is done through various algorithms such
as: Kinematic filter, Bayes filter, Kalman filter, Neural networks.

Planning

Planning consists of 2 parts which are mission planning and motion planning. Mission planning
is path planning that sets out exact waypoints on which lane to go using a High Definition Map
(HD Map). Motion planning is path following, it uses the precise location from the localization
module and the waypoint information from the mission planner and plans a trajectory for the car
to follow.

Control

The control module is responsible for the steering, throttle, and brake and executes the planned
trajectory from the motion planner. The trajectory information from the planning module goes
through a proportional-integral-derivative controller or model predictive controller, which tries to
make control actions as smooth as possible so that the passenger experiences a pleasant drive.

2.1.2 Feature analysis of HAD software frameworks

During the state of the art study we have found several frameworks that implement a (sub)set of the
capabilities described in section 2.1.1. Table 2.1 presents an overview of these HAD frameworks.
It can be observed that all these HAD frameworks are built on top high-level systems such as ROS,
Linux, and Android. The Baidu Apollo [18], EcoTwin [22] and Elektrobit robinos [55] frameworks
incorporate health monitor functionality.

Apollo version 3.0 uses a monitor and guardian module to improve safety: The monitor module
monitors the states of all hardware such as camera’s, LIDAR, radar, GNSS and the CAN bus and
monitors all the Apollo ROS software modules. When a hardware fault e.g. LiDAR failure occurs
or an Apollo ROS module is unresponsive. The monitor informs the guardian module to go
into a safe mode. The guardian puts the car in safe mode by decoupling the control module
from controlling the car. The car will be controlled by guardian during safe mode. The current
implementation of the safe mode in the guardian is a basic safe stop that starts braking and puts
the steering wheel in the center position.

2.1.3 Fault tolerance in HAD software frameworks

Fault tolerance is a property of a system to operate properly in the event of a fault in one of
its components. The HAD frameworks shown in Table 2.1 have limited fault tolerance, some
HAD frameworks implement a health monitor to inform the driver or a separate fall back system
whether a fault has occurred therefore the car can be stopped safely. However, fundamentally
most of these HAD frameworks lack fault tolerance since:

4 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

CHAPTER 2. STATE OF THE ART OVERVIEW

Table 2.1: HAD framework overview.

Name Architecture Healf,h Lidar Radar | Camera SAE Features
Monitor | Sensor | Sensor | Sensor
Apollo 3.0 [18] ROS based Yes Yes Yes Yes Level 3-4
Apollo 3.5 [18] Cyber RT [29] | Yes Yes Yes Yes Level 3-4
Autoware.Al [41] | ROS based No Yes Yes Yes Level 3-4
Autoware.Auto ROS2 based No No No No Level 3-4
EcoTwin [22] ROS based Yes No Yes Yes Level 2+ [22]
EB robinos [55] Linux based Yes Yes Yes Yes Level 3-4
NVDIA Drive [16] | Linux based No Yes Yes Yes Level 2-4
Comma.ai [62] Android based | No No No Yes Level 2 [35]

e Software is designed to run on a non-certified x86 [34] hardware platform

e Software is designed to run on Linux which in the current state is not a safe operating
system [47]

e HAD components are based on ROS which is, as shown in Section 2.3.1, not a good found-
ation for safety critical tasks.

e HAD components are running on a central system where they can interfere each other.

2.2 Safety standards and concepts

Safety of autonomous vehicle relies on rigorous development processes and integrated safety mech-
anisms. Both the processes and mechanisms are captured in various safety standards, such as
the Road Vehicles - Functional Safety standard ISO 26262. Besides standards, there exist design
patterns or safety concepts, which constitute the state-of-the-art in this field, such as voting mech-
anisms [26]. This Section briefly describes fault models, relevant safety standards and concludes
with a scoping diagram positioning various safety frameworks.

2.2.1 Fault models and monitoring techniques

A fault model [80] is an engineering model of something that could go wrong in the construction
or operation of a piece of equipment. From the model, the designer or user can then predict the
consequences of this particular fault.

At the system level, we can distinguish between hardware and software fault models. The
electronics hardware fault models are well studied and documented, for example, stuck-at faults,
open faults, and short faults. Software fault models, on the other hand, are less well studied [32],
in our study, we have categorized them in Figure 2.4.

We divide software fault models in algorithm, computation, and communication models. Al-
gorithm deficiencies require complex models and are algorithm specific therefore for our solution
we assume that the author of the algorithm creates their own algorithm specific monitor. Com-
putation faults originate from incorrect algorithm implementation in a particular programming
language. For example, a poor memory management system can lead to a memory leak and sub-
sequent system halt. An example of a computation control flow fault is a deadlock caused by locks
with circular dependencies. Network packet corruption is a typical example of a communication
fault model.

There exists many different monitoring techniques to detect faults. In Table 2.2 we classify
monitoring techniques according to their nature (passive or active), performance impact, latency
and interference effects, some classifications are unknown since it highly dependent on the im-
plementation. When designing a safety monitor, it is important to select one with appropriate
trade-offs among these classes. Active monitoring techniques rely on the system itself to report

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 5

CHAPTER 2. STATE OF THE ART OVERVIEW

< / Software fault models)

Scalability

Algorithm deficiencies Portability

(Low precision

Low recall

Memory leak

Memory corruption
Memory faults
— Overflow

o Computation Faults | Segmentation fault

e Deadlock
— Livelock
Control faults
[Unhandled exception
| Timing faults
Packet corruption
L Communication faults | Timing faults

Dropped packets

Figure 2.4: Software fault models

its health state, whereas passive ones observe the system outputs from outside. The performance
impact column indicates how much execution time is dedicated for monitoring.
Below is a brief explanation of the techniques:

Publish/subscribe. In an application with a publish-subscribe middleware, a health monitor
can subscribe to topics of the monitored system and analyze the outgoing or incoming data
for timing errors or data integrity issues.

Memory polling. In a shared memory system, the monitor can read memory and analyze its
content for data integrity issues.

Power supply check. A power supply line on a printed circuit board or in an IC can be
checked, for example, for undervoltage or overvoltage.

Peripheral status bit check. A peripheral device on an IC can expose its status through a
memory-mapped IO interface. The monitor can then check this status bit using a memory-
mapped load operation.

(Boundary) scan chain. A boundary scan chain, typically used for debugging or testing, can
also be used to read the state of the integrated circuit or a printed circuit board.

Network sniffing. Network interface drivers in OSes, such as Linux or BSD, allow for monit-
oring network packets by applications not involved directly in the network communication.
This feature can be used by monitors to analyze network traffic of the system and identify
faults.

Port scan. In networking a port scan involves an external network node interrogating the
port of a node, which is part of the system under monitoring. This enables checking if an
active server application is running properly behind the port.

Hardware heartbeat. An electronic circuit can generate a periodic pulse signal, indicating
proper operation of the circuit itself. If the pulse is delayed or totally absent, the monitor
can identify a system fault.

Software heartbeat. Similarly to hardware, the software can also generate a periodic event,
such as an interrupt or a memory cell change, to signal it’s proper behavior. An external
hardware or software monitor can then analyze the software heartbeat to identify faults.
System load profiling. Processor load beyond a certain threshold can result in delaying
outputs or even application crashes. Therefore, a monitor software, such as GNU/Linux
top, can calculate the load of the system and compare it to the dangerous level.

System status remote procedure call. An application software can also provide its health
information through a dedicated API, such as XML-RPC, used for a remote procedure call.
Challenge-response. Both hardware and software systems may have dedicated interfaces for

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

CHAPTER 2. STATE OF THE ART OVERVIEW

interrogations by monitors. Using this interface the monitor sends a challenge, for example,
an input to a certain function, and the system needs to compute this function and return
the response to the monitor.

Our work does not propose new fault models or monitoring techniques to detect existing
fault models; we intend to reuse existing control flow, data integrity, and timing monitors. The
focus of our work instead will be to construct a vehicle-level distributed platform for monitoring
information exchanging and recovery mechanisms.

Table 2.2: Monitoring techniques

Technique Active/Passive | Performance impact Latency Interference
Publish/Subscribe Passive Medium Low Yes
Memory polling Passive Low Low Yes
Power supply check Passive None Low No
Peripheral status bit check Passive Low Low Yes
(Boundary) scan chain Passive Low/High High Yes
Network sniffing Active Low Low Yes
Port scan Active Low Low Yes

Hardware heartbeat Active Low ? ?

Software heartbeat Active Medium ? Yes
System load profiling Active Medium/High High/Medium Yes
System status RPC Active High High Yes
Challenge-response Active High High Yes

2.2.2 Device reliability

Reliability engineering is a well-established discipline in system engineering focusing on the de-
pendability of devices. Reliability is defined as the probability of success or as a frequency of fail-
ures [87]. There exist multiple frameworks for electronic device reliability, such as AEC Q100 [77]
and SN 29500 [2]. Device reliability is the foundation of functional safety standards, such as ISO
26262.

2.2.3 1ISO 26262 Road Vehicles - Functional safety

ISO 26262 [39] is an automotive adaption of the IEC 61508 [38] standard which is a generic
functional safety standard supporting the design, development, and operation of electrical/elec-
tronic/programmable safety-related systems. ISO 26262 defines functional safety for automotive
equipment and addresses processes and practices of the product development phase, ranging from
specification, design, development, verification, production, and support. ISO 26262 is a risk-based
safety standard and specifies that during the concept phase of the product development an item
definition, hazard analysis and risk assessment, and a functional safety concept must be made.
Primarily ISO 26262 focuses on reducing or mitigation of faults and malfunction. Faults are cat-
egorized into systematic faults, including software bugs, and random hardware faults, occurring
at run-time, for example, due to cosmic radiation.

2.2.4 ISO/PAS 21448 Road Vehicles - Safety of the intended function-
ality

ISO/PAS 21488 [40] is an emerging standard draft, which addresses the safety of the intended

functionality (SOTIF) or safety in use. The SOTIF draft is complementary to ISO 26262, because

the former does not concern with system faults and malfunction. Note, however, that to meet
SOTIF standard, the system should first comply with ISO 26262. The goal of the safety of

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 7

CHAPTER 2. STATE OF THE ART OVERVIEW

the intended functionality draft is to reduce the risk of hazards due to performance limitations
and foreseeable misuse. Both performance limitations and foreseeable misuse rely on situational
awareness [63] based on perception sensor data to identify safety risks. While ISO 26262 primarily
covered ADAS functions, the SOTIF concentrates on HAD.

2.2.5 Security and safety

It should be noted that security and safety are distinct items. Safety is the prevention of harm
to humans caused by the system or environment, whereas security is the prevention of malicious
human activities using the system. The automotive industry has been only considering security in
a physical sense, such as protection against breaking into a car and car theft. However, in a fully
autonomous car, new technologies such as Vehicle-to-everything (V2X) communication and smart
sensors are introduced, which gives attackers new means of intentional malicious manipulations.
Although our study does not focus on security, it should be considered during the safety-critical
system design. In particular, a malicious attacker should be restricted from physically harming
the passengers and road users. To compensate for the limited exposure of security topics in ISO
26262, the ISO standardization body is working on a draft for security in road vehicles ISO/SAE
CD 21434 ”"Road vehicles cybersecurity engineering”.

2.2.6 Safety mechanisms and processes

Besides safety-related standards, state-of-the-art contains many safety mechanisms to observe,
analyze and response to faults and hazardous situations. For example, a built-in self-test (BIST) [78]
is a popular hardware mechanism to detect faults in ICs. Other examples of safety mechanisms
include watchdogs, error correction codes, redundancy with majority voting, etc. Note that be-
sides mechanisms there exist many non-standardized processes to ensure quality and safety of a
computer system, such as pair-programming, test-driven development, defensive programming,
etc.

2.2.7 Scoping diagram of safety frameworks

Safety requires a holistic approach of different perspectives. To understand these perspectives
we made Figure 2.5 with an overview of safety-related laws, standards and concepts, primarily
inspired by the prior work from Carnegie Mellon University [44] and NXP safety community [46].
The color-coding distinguishes between laws or standards, drafts and concepts using blue, yellow
and pink, respectively. Although the content of the diagram will never be complete and fully
accurate, we attempt to categorize and position prominent safety frameworks relative to each
other and identify the domain for our contribution.
In the diagram, we distinguish four major scopes:

1. Society
2. Human
3. System
4. Component

The society category identifies frameworks that operate in the society. Laws, standards and
concepts, such as the California Car Accident law [12] and the Trolley problem [88] are popular
in mass media but have a limited impact on the technology. Humans are heavily involved in the
frameworks addressing operations, maintenance, and security. Furthermore, the component-level
safety frameworks have been well-studied in literature and often do not involve the system as a
whole. Societal, human, and component aspects of safety are not covered in this work, as we focus
on the system-level design of an autonomous vehicle.

8 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

CHAPTER 2. STATE OF THE ART OVERVIEW

Interestingly, there are multiple approaches to system-level safety. For example, the Toyota
Guardian [9] focuses on a seamless transition of vehicle control between the human and the
autonomous vehicle itself. On the other hand, the safing gate from ANSYS SCADE [1] omits
the human category and suggests using a rule-based safety net for Artificial Intelligence compon-
ents. Furthermore, Intel/Mobileye’s RSS (Responsibility-Sensitive Safety) [7] excludes both the
human and rule-based mechanisms altogether and attempts to capture safety in terms of formal
mathematics. The RSS authors identify the key challenge in automated driving to be the path
planning and maintaining a safe distance to obstacles, while stating that perception can be prop-
erly tackled with heterogeneous sensor diversity and vehicle control is well covered with advanced
control theory. The path planning is indeed challenging because it is essentially a multi-actor
problem, where the ego-vehicle is not in control of other hard-to-predict road users. Overall, the
system category exhibits highly diverse approaches to safety in autonomous driving and appears
to be an active research field.

For fault monitoring in an engine controller, a consortium of car makers and Tier 1 com-
panies, including BMW, Volkswagen, Porsche, Daimler and Audi, defined the E-Gas monitoring
concept [89], which was later was extended for multicore processors in [33]. Essentially, E-Gas
distinguishes three levels:

1. Level 1: functional level, which includes the function itself, such as engine control.

2. Level 2: function monitoring level, which focuses on detection of faults in level 1. In our
work, we refer to it as a function monitor.

3. Level 3: controller monitoring level, which focuses on checking the controller and level 2.
The controller level is split across the controller itself, as well as an external device (IC),
such as a System-Basis Chip (SBC). The controller part of this level is referred to as a
platform monitor in this work, while the external part of this level we call vehicle-level
safety mechanism.

The E-Gas addresses several safety goals, among which the most stringent is prevention of
unintended acceleration. According to the E-Gas concept, monitoring levels 2 and 3 contain
Enable outputs, which can disable fuel injection into the motor. In case of a fault, the enable
output is invalidated by any of the E-Gas monitors, resulting in absence of motor torque and,
consequently, acceleration. In other words, the enable output implements the fail-silent behavior
for the system, which satisfies the key safety goal.

Although this is proven in use industry standard primarily targeted engine controls, conceptu-
ally it is applicable to other automotive functions as well. In our work, we will derive a vehicle-level
safety mechanism for autonomous driving from the E-Gas monitoring concept.

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 9

0T

s10s1ATOdAR] Surs) 9remijog 9IIYdA SNOWOUOINY I0] WSIURYIIN £}Jeg pPonqrisiq v

: Scope Safety laws, standards and concepts
gyt st - /S’ At
] Ie al] California Car Accident Law Dutch RDW liability autonomous vehicles
e : g : (damage compensation, insurance) (damage compensation, insurance)
Q : ethiCS ! IEEE P700x Trolley problem Manufacture- or user- MIT Moral machine
8 I Ethics in autonomous vehicles (classical ethical configurable car moral (research tool for ethics in
w : moral : (draft) dilemma) (Harari “21 lessons”) autonomous vehicles)
1 1
e il R
| secu rity | ISO/IEC 15408 ISO/IEC 27001 ISO/SAE CD 21434
! ! Common Criteria Information security standard Road vehicles cybersecurity engineering (draft)
c .
g | maintenance! ISO 21448 gLf4§00f
! ! Safety Of arety o
S .
£ ope rations: Iece1s08 ISO 26262 The Intended Toyota NCAP autonomous
| . | Functional Functional Functionality Guardian (government agency, collision safety ranks) products
I p roduction: safetyof Safety (draft, safety (seamless (draft,
e ___. ! E/EIPE (faults, inuse, fault- . engagement . _ _ _ _ _ oo CoTp“zrgggtzar .
! I 1 Safety- system- free, HARA, and Distributed ANSYS Ecomv i AL Fail-
| p rediction | related wide, also technology disengagem Safety SCADE safety an35214§8, op:Irati
1 I Systems includes limits, HMI) ent, excludes : ‘ an
I . i - ; A Mechanism safing gate channel Canada) onal
S : pe rce pt Ion : (functional production, product life- (automated (doer-checker (safety (redund
Q! . . I safety PIOCESS: cycle) driving, architecture, channel for ancy,
B! localization § field faults and safe Al the degraded fail-
b) | industries) monitoring) no-faullts, checker) mode) over,
! path planning! Intel RSS vehicle e
: . : safety) toleranc
. vehicle control: E-Gas e)
g Y e e =Y T 11
£ ' ISO/TS 16949 ISO/IEC 15504 control
c 1 1 g
5 software module : oty cE monitor
2. Integrated Circuit; Ece1709 ma‘;zgczsms?r IEC 62380 SN 29500 AEC Q10x Voting PPAP
€ : .) : (reliability, oriented) (reliability, failure rates, (reliability, AEC Q200 (triple- and dual- (reliability,
S ! e | ectronic d evice ! failure rates) mean time to failure) failure rates) (reliability) modular redundancy) process)

Figure 2.5: Safety laws, standards and concepts

California Car Accident Law [12], Dutch RDW liability autonomous vehicles [73], ISO 26262 [39], ISO 21488 [40], Trolley problem [88], User-configurable car moral [83], MIT
moral machine [8], NCAP [85], Toyota Guardian [9], Intel/Mobileye RSS [7], ANSYS Scade safing gate [1], EcoTwin project [6], E-Gas [89], PPAP [86]

MHAIANHAAO LV HHL A0 ALVLS ¢ H4.LdVHO

CHAPTER 2. STATE OF THE ART OVERVIEW

In general, this work will focus on the system-level safety, omitting the societal, human and
component frameworks. In contrast to E-Gas and Intel/Mobileye RSS, we will attempt to address
the full system scope. Having covered the automated driving application and basic safety concepts,
in the next section we analyze the software middleware.

2.3 Software middleware

Middleware is a multipurpose software that lies between an operating system and applications
running on it. A middleware provides services such as communication and data management
for distributed software using a translation layer. Which eases the development process of a
distributed application and provides robust communication.

2.3.1 Robot Operating System (ROS)

ROS [60] is an open-source software framework for robot software development, providing a mid-
dleware operating system running on top of a real operating system. ROS consists of a set of tools,
libraries, and a communication model to simplify development. The communication model of ROS
is a publish-subscribe pattern [23] where a ROS node can subscribe to messages which are routed
through ROS topics to another ROS node. ROS also provides a request/reply interaction through
services. A ROS service defines the set of request/reply messages where a ROS node can initiate a
remote procedure call and awaits the reply. ROS is designed to run on modern operating systems
such as Linux, Windows, and Mac, it is not possible to run ROS on an RTOS. Furthermore, ROS
works with a centralized master, where communication with ROS nodes is done using the TCP /TP
protocol. These design choices of ROS do not make it suitable for computing safety-critical tasks,
therefore, the designers of ROS developed Robot Operating System 2 to overcome these shortcom-
ings. ROS2 is designed with requirements such as; real-time computing, portability, functional
safety, security, and, fully distributed computing in mind. With ROS2 it is possible to run a ROS
node on a certified automotive grade safe RTOS.

2.3.2 Data Distribution Service (DDS)

The Data Distribution Service (DDS) [57] for real-time systems is an Object Management Group
middleware standard that provides a decentralized distributed communication service using the
publish-subscribe pattern with discovery functionality.

ROS2 uses DDS for its communication services which resolve most of the issues as discussed in
section 2.3.1. Another goal of ROS2 is to make an abstraction layer between ROS2 and DDS which
hides much of the complexity of DDS. Furthermore, it provides the possibility to use different DDS
implementations when required for example using a DDS implementation certified for ISO 26262
ASIL-D can be used.

The Object Management Group also published some extensions to the DDS standard: DDS
for eXtremely Resource Constrained Environments (DDS-XRCE) [54] which defines a protocol for
resource constrained devices to allow them to participate in the DDS network. DDS Security an
extension to the DDS standard focusing to mitigate the following threats: unauthorized subscrip-
tion, unauthorized publication, tampering & relay and insider attacks. A new upcoming extension
to the DDS standard is DDS for Time-Sensitive Networking (DDS-TSN) which incorporates the
IEEE Time-Sensitive Networking set of standards [31] used in automotive Ethernet into DDS.

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 11

CHAPTER 2. STATE OF THE ART OVERVIEW

2.4 Operating Systems

An operating system is a computer software that manages the hardware components, memory,
and provides an interface to schedule component software. Automotive vehicle software consists of
various components that have to run on one more operating systems. There are many different op-
erating systems providing different functionality and possesses different availability and reliability.
This section gives an overview of the state of the art operating systems that can run automotive
vehicle software but also studies various component isolation techniques used in operating systems.

2.4.1 Xenomai: Time-critical applications on a Linux-based platform

Xenomai is a Linux realtime extension adding an RTOS to the Linux kernel, this is done by
modifying the interrupt handler to fully preempt the Linux kernel, during an interrupt the signals
goes first through the Xenomai RTOS. Here decisions are made whether the interrupt is meant
for Xenomai and passes it to the real-time application or it passes the interrupt through to the
Linux kernel. Real-time Xenomai applications must implement both Linux glibc interface and
the Xenomai libpthread_rt interface have real-time event support. Xenomali is suitable in mixed
criticality ADAS systems and study [21] shows predictable real-time behavior.

2.4.2 Operating-system-level virtualization

Operating-system-level virtualization, also known as ”containerization”, is an operating system
feature that allows the isolation of computer applications thereby reducing the number of required
computing resources. Containing them in their own virtual environment where the application
only sees their own file system and optional devices can be assigned to their environment. Con-
tainerization is generally faster than full virtualization because there is no operating system and
hypervisor overhead. Docker [48] and Linux Containers (LXC) are popular implementations of
containerization and are widely used in the industry. Since containerization is an operating sys-
tem feature, applications are not fully isolated, therefore applications can still interfere with each
other, for example a kernel call.

12 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

CHAPTER 2. STATE OF THE ART OVERVIEW

2.4.3 Hardware virtualization

Modern ARM CPUs with an ARMvS instruction set include support for hardware virtualiza-
tion [49]. On older ARM architectures virtualization had to be done through software virtual-
ization which is expensive because it requires more computing resources caused by the software
virtualization overhead [37], furthermore software virtualization does not provide good isolation
since it cannot fully isolate the memory addressing between guest systems. The ARM virtualiza-
tion extensions as stated in [49] provide multiple hardware improvements to reduce virtualization
overhead [61] and enforces isolation between the guests address spaces.

CPU virtualization

Without the addition of the ARM virtualization extensions
an ARM CPU had 2 exception levels: One for application
mode (ELO) and one for kernel mode (EL1). The kernel
mode exception level had more privileges than application
mode so that a kernel can manage applications and the
applications are isolated from each other. With the ARM
virtualization extensions an extra CPU exception level has Least privileged
been added which has more privileges then kernel mode.
This mode is called hypervisor mode (EL2), where it can
arbitrate between different kernels. And these kernels are
isolated from each other. Figure 2.6 shows the different Figure 2.6: ARMv8 Exception
exception levels of an ARMv8 CPU. Levels.

Most privileged

Memory virtualization Memory virtualization is already a common practice in modern op-
erating systems. Applications that get launched in a modern operating system uses the virtual
address space and the kernel uses physical address space. The virtual address to physical address
conversion is accelerated by the memory management unit. For virtualization a kernel should not
directly write to the physical memory otherwise it is possible to read and write memory from an-
other kernel. The ARM virtualization extensions [49] add intermediate physical address support
to the memory management unit. A virtualized kernel will use the intermediate physical address
space and does not have a notion that is virtualized. A hypervisor will configure the mapping
of intermediate physical address space to physical address space, Figure 2.7 indicates how the
address space is partitioned.

Guest
Virtual Address (VA) ’ App ‘ ’ App ‘ ’ App ‘

Virtual Address (VA) App ’ App ‘ ’ App Intermediate Physical Address (IPA) | OS |
Physical Address (PA) OS Physical Address (PA) HypeI'ViSOI'
Hardware Hardware

Figure 2.7: Memory virtualization

Interrupt virtualization

Interrupt virtualization is done by extending the interrupt controller with virtual interrupts allow-
ing to trap the CPU into either directly to the kernel mode or hypervisor mode. The hypervisor
kernel is responsible for configuring the ARM interrupt controller, furthermore the ARM virtual-
ization extensions includes virtual timers for guest systems where hardware timers are translated
into virtual timers which directly trap into guest system and therefore bypasses the hypervisor.

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 13

CHAPTER 2. STATE OF THE ART OVERVIEW

Hypervisors

A hypervisor is a kernel that allows virtualization. The hypervisor is responsible for managing and
scheduling the guest systems. In this study we focus on hypervisor designed for the ARMv8 micro
architecture, which means that a hypervisor for ARMv8 must implement the ARM virtualization
extensions as listed above. A hypervisor can be classified into two types of hypervisors [59]. Type-
1, a bare-metal hypervisor running directly on the hardware. Type-2, a hosted hypervisor that
runs on top of an operating system. Based on studying the existing hypervisor architectures we
observed that the two type classification of Popek & Goldberg (1974) [59] can be extended into
the following subcategories:

e True bare-metal hypervisor that only implements a minimal subset of drivers for hardware
virtualization.

e Microkernel based hypervisor where the device drivers are running on top the kernel as a
service

e Monolithic hypervisor where all drivers are included inside the hypervisor.

See Figure 2.8 for a visualization of our extended hypervisor classification.

/(X;dmiil Guest Guest Guest Guest Guest Guest Guest Guest Guest
ues
App ||| App App |[[App || 2| |[App ||| App App ||| App ||l o | || App ||| App
> >
& OS ||| OS || & 0S 08
(OF) (O] 0OS (0N 0S 0S
Drivers Hypervisor Hypervisor
Hypervisor Hypervisor Hypervisor [Dyivers Host OS Host OS [mj
Hardware Hardware Hardware ‘ Hardware Hardware ‘

Type 1 Bare-metal Type 1 Microkernel — Type 1 Monolithic =~ Type 2 Microkernel — Type 2 Monolithic
Figure 2.8: Extended hypervisor kernel classification

2.4.4 Siemens Jailhouse: Linux-based partitioning hypervisor

Jailhouse focuses on isolation and partitioning rather than virtualization [67]. Jailhouse is a type
2 hypervisor that runs on top of Linux. However, Linux is only used to initialize the hardware,
guest systems on Jailhouse will get a 1:1 mapping to available hardware. This is done using
CPU pinning where a dedicated CPU gets mapped to a guest, in contrast to other hypervisors
in Jailhouse there is no CPU scheduling involved and therefore Jailhouse has low-overhead [71].
Figure 2.9 shows that a RTOS only runs on top of the partition layer and is not dependent on

Linux.
RTOS

‘ Partitioning layer ‘

Linux Linux
Linux Drivers J
D e « ‘ Partitioning layer

Hardware | | Hardware | | Hardware |

1. Boot phase 2. Partitioning 3. Operational phase
Figure 2.9: Siemens Jailhouse partitioning concept

2.4.5 Green Hills INTEGRITY RTOS and Multivisor hypervisor

Green Hills INTEGRITY is a commercial microkernel-based RTOS, specifically designed for safety-
critical systems [42] and is 1SO26262 [39] ASIL D certified. The microkernel architecture of

14 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

CHAPTER 2. STATE OF THE ART OVERVIEW

INTEGRITY isolates applications, device drivers, the file system, and networking capabilities.
INTEGRITY provides a proprietary API and supports the POSIX API. INTEGRITY provides
type 2 hypervisor functionality called Multivisor, which can virtualize Linux, Android, Windows,
and QNX Neutrino operating systems.

2.4.6 QNX Neutrino RTOS and hypervisor

QNX Neutrino [45] is a commercial microkernel-based RTOS. Designed for automotive, medical,
transportation, and industrial embedded systems and is 15026262 [39] ASIL D certified. QNX
Neutrino is POSIX-compliant and also implements its own API. Another product of QNX is the
QNX hypervisor, which is a QNX Neutrino based type 1 hypervisor which can virtualize Linux,
Android, and QNX Neutrino operating systems.

2.5 Automotive hardware

Modern vehicle hardware consists of complex mechanical, hydraulic and electronic systems. Fig-
ure 2.10 organizes the electronic systems functionality in three categories: sense, think and act.
These functions are implemented in multiple electronic controllers, sensors and actuators, all of
which are interconnected through in-vehicle networks, such as CAN, LIN, Ethernet, etc. It is
important to note here, that vehicle electronics rely on distributed processing, where multiple
processors in a SoC or on the in-vehicle network cooperate to perform a single function, such as
engine control, electronic power steering or autonomous emergency braking. In this work we focus
primarily on autonomy and powertrain subsystems.

SENSE @
I

Cellular
Connectivity WiFi, BT, GNSS, NFC

Smart Car Access

Connectivity
Domain
Controller

|
V2X
Sensor Fusion
& Planning
Domain
Controller a

Radar
ADAS > Autonomy

Camera

- o]

ESDaG| |

Lidar
|
Motion & Pressure

Speed

]
a
a
a
*]
8
7]
a

Powertrain & Powertrain
Domain i

Vehicle Dynamics

L

B Network Gateway

Radio & Audio .
Connected - . eCockpit
ouch Displays

Infotainment | Amplifiers
Voice Recognition a

Figure 2.10: Sense, think and act categories of automotive electronics [91]

The powertrain subsystem compromises the main components that provide power to control the
wheels. The powertrain subsystem is controlled by the powertrain domain controller which reads

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 15

CHAPTER 2. STATE OF THE ART OVERVIEW

NXP

BlueBox

Figure 2.11: Hypothetical in-vehicle network for a autonomous car

the human control input. In a fully autonomous car the powertrain subsystem gets controlled by
the autonomy subsystem, the planning domain controller calculates a path from sensor fusion data
and sends an actuation signal to the powertrain. Sensor fusion is combining sensory from different
sensors e.g. LIDAR, camera, radar such that resulting data yields higher accuracy than would be
possible using the sensors individually. Figure 2.11 show a hypothetical in-vehicle network for a
fully autonomous car. The existing in-vehicle network is extended with state of the art sensors
required for autonomy which can be processed for example on the NXP BlueBox prototyping
platform capable of the required performance, functional safety and automotive reliability for
engineers to develop self-driving cars

Automotive research studies often utilize a hardware-in-the-loop prototyping platform, which
is more convenient and safer than a complete vehicle. For our study, we selected the NXP BlueBox
shown in Figure 2.12, which is a HAD prototyping platform developed by NXP semiconductors
to build HAD systems, assess their performance requirements and experiment with functional
safety mechanisms. Internally, the NXP BlueBox incorporates several networks and point-to-
point interfaces, such as the Automotive Ethernet and PCle, interconnecting three major SoCs
with different safety integrity levels, as shown in Figure 2.13. These processors and networks
allow for evaluation of safety mechanisms for reliable distributed processing, which was pointed
out earlier in this section. Finally, the BlueBox includes automotive IOs to connect to the vehicle
actuators and sensors, as well as an solid state drive to record data for post-processing.

Below is a brief explanation of major SoCs in the BlueBox:

1. S32R274: automotive-grade safety radar processor contains two Power [65] cores 20027 and
one Power €200z4 lock-step core, supporting ISO 26262 up to the highest ASIL D.

2. S32V234: automotive-grade vision processor contains four ARM Cortex-A53 CPU cores, a
ARM Cortex-M4 core and an APEX machine learning accelerator. it supports ISO 26262
up to the high ASIL C.

3. LS2084A: powerful processor contains eight ARM Cortex-A72 CPU cores and according to
ISO 26262 it is a quality managed device.

4. SJA1105: three automotive grade Ethernet switches with support for Audio-Video Bridging
and Time-Sensitive Network protocols.

16 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

CHAPTER 2. STATE OF THE ART OVERVIEW

Figure 2.12: NXP BlueBox HAD prototyping platform

Figure 2.13: NXP BlueBox internals

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 17

Chapter 3

Problem statement

Based on the state of the art study we identified the following problems in autonomous vehicle
software:

1. Automated driving relies on distributed processing with up to 80 ECUs [30]. In particular,

application-specific hardware accelerators and multiprocessors are used to satisfy both high
performance demands and efficiency of automotive applications. A central safety monitor
is simple from the architecture perspective, however, for such a distributed system it has
high reaction time and low observability. By observability here we mean the ability to
detect faults and read hardware and software state of the distributed system components in
sufficient detail.

. Automated driving uses various sensors to analyze the surroundings of the car coupled with

Artificial Intelligence algorithms for object detection and classification [56]. Both sensor
and Al technologies have performance limitations, which may result in hazardous situations
even when the system operates without any faults. Furthermore, as described in the SOTIF
standard draft [40], foreseeable human misuse may jeopardize the passenger safety.

. There is an ongoing trend in the automotive industry to consolidate several functions in

a single device to reduce the vehicle cost [25]. Unfortunately, cascading failures between
two or more functions in a consolidated automotive system can lead to a violation of safety
requirements. Therefore, ISO 26262 [39] demands freedom from interference to avoid such
violations.

In this project we aim at designing a new safety mechanism that improves safety of autonomous

vehicle software in the three challenging areas listed above.

18

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

Chapter 4

Research methodology

We can distinguish between formal mathematical [81] and experimental methods for the investig-
ation of solutions to the formulated problem statement. The experimental method [79] allows for
more accurate and industry-relevant analysis on representative prototypes. In the experimental
method one of the key safety goals is to ensure that the autonomous vehicle avoids colliding
with obstacles. In our study we chose the NXP automotive prototyping platform, as described in
Section 2.5.

Our research methodology included the following phases:

1.

Survey state-of-the-art autonomous vehicle software to formulate design goals for the safety
mechanism.

Design a prototype of the safety mechanism for autonomous vehicle software for the reality
check of the solution.

Conduct a fault injection experiment to test operation of the safety mechanism.

Qualitatively analyze applicability of the solution to similar systems.

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 19

Chapter 5

Safety Mechanism Design

An autonomous vehicle has to reach the destination without creating hazards, this can be defined
as a safety goal: the output commands do not command a path that collides with an obstacle.
As identified in the problem statement in chapter 3 we propose to design a safety mechanism
that helps in achieving this safety goal by increasing the safety of autonomous vehicle software.
Section 5.1 lists the software design goals. Section 5.3 describes the architecture of the safety
mechanism and discusses the design choices made.

5.1 Software design goals

Our target is to create a safety mechanism for a HAD software framework running on the NXP
BlueBox prototyping platform. The problem statement in chapter 3 describes 3 challengers that
our safety mechanism intends to address. For our safety mechanism design we introduce 3 corres-
ponding goals that are detailed below:

G1 The safety mechanism should be able to detect relevant faults and react to them before
occurrence of the hazard.

G2 Proper handling of fault-free hazardous scenarios requires situational awareness, as stated
by the SOTIF standard. The HAD software state contains sufficient information to identify
hazardous situations. Therefore, the safety mechanism should be able to read HAD software
state internals.

G3 An automated driving system should isolate its individual functions to avoid cascading fail-
ures by utilizing inter-SoC or intra-SoC partitioning.

5.2 Communication interfaces

For goal G2 a mechanism should be used to read the HAD software state internals. As iden-
tified in chapter 2 modern HAD software frameworks uses distributed high level protocols such
as ROS which can be used on top of Automotive Ethernet. As described in Section 2.3.1 ROS
uses a publish-subscribe model for communication which makes it very suitable for monitoring by
subscribing to a topic of the autonomous vehicle software while having minimal impact on the
behavior of the application. Other alternatives are using other communication interfaces such as
Controller Area Network (CAN), Local Interconnect Network (LIN) or FlexRay to read state in-
ternals. However, all these communication interfaces lack the bandwidth required for autonomous
vehicle software [20] and are mostly used for the low bandwidth safety critical data such as control
output as described in 2.1.1.

However, using ROS for the safety mechanism would also not be feasible as stated in Sec-
tion 2.3.1 ROS is designed for the Linux operating system, this problematic since it means it is

20 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

CHAPTER 5. SAFETY MECHANISM DESIGN

XRCE P XRCE BESATES
Client Agent ‘Qt’co'
¢ e

S
Global Data Space

XRCE 2
Figure 5.1: DDS-XRCE clients communicating through DDS-XRCE agent [54]

unable to run on an ISO 26262 ASIL-D certified hardware and is not suitable for computing a
safety-critical tasks which are required for our safety mechanism. ROS2 overcomes some design
problems in ROS, but at this moment it only runs on Linux, Windows, or Mac. However there is an
approach called micro-ROS [52] which aims at running ROS2 on microcontrollers. Unfortunately,
micro-ROS is still a work in progress and is not usable yet. Another alternative is to use the DDS
middleware directly, as described in 2.3.2 ROS2 is built on top off DDS which makes it possible
to communicate with ROS2 nodes through DDS. Unfortunately, DDS implementations tend to be
larger than what typical microcontrollers memory can handle. For example, the eProsima Fast-
RTPS DDS [14] implementation version 1.6.0 on a x86 [34] Ubuntu 18.04 machine has a size of
32MB, and typical microcontroller memory varies between 4KB and 4MB.

For our safety mechanism we propose to use DDS for eXtremely Resource Constrained En-
vironments (DDS-XRCE) [54] which is a trimmed down version of DDS specifically designed for
micro controllers with a low clock frequency and small memory. DDS-XRCE retains full DDS
functionality through a DDS-XRCE agent as shown in Figure 5.1.

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 21

CHAPTER 5. SAFETY MECHANISM DESIGN

5.3 Distributed Safety Mechanism Architecture

The architecture of the distributed safety mechanism is based on the E-Gas [89] 3-level monitoring
concept described in the state-of-the-art Section 2.2.7. Figure 5.2 shows the architecture of the E-
Gas concept where a function (level 1) is monitored by a function monitor (level 2), the controller
monitor (level 3) monitors the ECU internals, and an external monitor verifies this monitor using

a challenge-response process.

The Distributed Safety Mechanism (DSM) concept extends
the E-Gas concept by using the DDS middleware for dis-
tributed communication between the different levels. The
DSM concept shown on Figure 5.3 consists of 2 data paths:
a function path where, input and output data will be pub-
lished and, a diagnostics path where all diagnostics data
will be published. The data paths can be cost-effectively
implemented on-chip as shown between L1 Function and L2
Function Monitor, as well as Ethernet network communic-
ation as shown between L1 Function and L3 Vehicle-level
Safety Mechanism. On top of the fail-silent enable output
of the E-Gas concept, our DSM in includes a safety mech-
anism, which can take over vehicle control with situational
awareness using function data paths.

Input =

Function Controller ECU

o
~) Enable

L2 Function Monitoring

3 T

L3 Controller Monitoring

1 Z 3

¥]

L3 Controller Monitoring

Monitoring Controller ECU

Figure 5.2: E-Gas concept [89]

|
Function Controller ECU Safety Mechanism
I ECU
L1 L2 L3 13
/0 Function | | Function Platform Safety Vehicle-level Safety
Monitor Mechanism Mechanism
- N ~ -

Diagnostics data

Function data

Figure 5.3: DSM concept

Figure 5.4 shows a system overview of our distributed safety mechanism on the NXP BlueBox
prototyping platform. Table 5.1 shows the comparison between the traditional E-Gas components
and the the distributed safety mechanism components used in our system. In Section 5.3.1 we
will explain why we choose for the Apollo HAD framework. Section 5.3.2 and 5.3.3 reasons about
the partitioning. Section 5.3.4 details the distributed health monitors to detect relevant faults.
Finally, Section 5.3.5 will present the distributed safety mechanism.

Table 5.1: Comparision between E-Gas components and distributed safety mechanism components.

E-Gas level | E-Gas component DSM component
Level 1 Function Apollo Components
Level 2 Function monitor Function Health monitor
Level 3 Controller monitor OS Platform Monitor
Level 3 Controller monitor Hypervisor Platform Mechanism
Level 3 Physically independent controller monitor | Vehicle-level Safety Mechanism
22 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

s10S1AT9dAT] Suls) aI1emijog 9[dIYaA SNOWOUOINY I0J WSIURYDIIN AoJes PoInqLIsi Y

€¢C

Distributed Safety Mechanism Concept v1
Roly-poly LTI project, 24-Jun-2019

Features:
1. distributed monitors for higher reliability

2. analysis of distributed HAD application protocol and state

3. isolation and faulty domain pause by hypervisor

Legend

D Baidu Apollo

Distributed Safety Mechanism

Hypervisor platform

Vehicle-level Safety Mechanism

Mechanism

Observe Observe
Tom T Fomeion | o || !

Control o " Perception E Analyze Analyze
]
1
I

! Response Response

Localization Planning Prediction 5 PIatform ROS2/DDS ROS2/DDS \ P P

Monitor '
'
'
Linux Linux 1

ROS2/DDS ' ROS2/DDS ROS2/DDS
I

Linux RTOS RTOS
LS2084A S32R274
APEX ML
8x A72 4x A53 accelerator M4 3x e200
NIC NIC NIC
. —
Switch

Figure 5.4: DSM concept on NXP BlueBox

NOISHA WSINVHOHIN ALHAVS "¢ HHLdVHD

CHAPTER 5. SAFETY MECHANISM DESIGN

5.3.1 Apollo HAD software framework

To satisfy goal G1 and G2 a functional HAD software framework is required. Table 2.1 a HAD
software framework feature comparison has been made. From this comparison we chose for the
Apollo framework because:

e Commercial support from the industry
e Vehicle-Tested on public roads
e Monitoring capabilities that could be extended

e ROS based tooling and communication middleware allows for rapid prototyping

5.3.2 Inter-SoC partitioning of the HAD framework

Ensuring freedom from interference is of great importance to goal G3. However, ensuring freedom
from interference is hard since in ideal circumstances every software component should be fully
isolated from each other. However, this is a trade-off between latency, throughput and costs. For
our safety mechanism design, we decided to partition the Apollo HAD software framework on to
the NXP BlueBox platform as shown in Section 2.5. A HAD software framework consists of a
localization, perception, prediction, planning, and control module as discussed in Section 2.1.1.
The localization, prediction, planning module are partitioned to the LS2084A SoC, the control and
monitor module are partitioned to the S32V234 SoC. Finally our safety mechanism will run on the
S32R27 SoC. Apollo also has its own safety mechanism called guardian, we have partitioned this
module to the S32V234 SoC. Unfortunately, during testing of the guardian component, it seems
that version 3.0 of Apollo only implements some basic checks and does not provide any active safety
mechanism. The perception module cannot run on BlueBox platform because the S32V234 APEX
machine learning accelerator [53] is incompatible with the Apollo machine learning algorithms.
Since machine learning is not in the scope of this research, we chose for a workaround using a
desktop PC with a machine learning accelerator that will execute the Apollo machine learning
algorithms used in the perception module.

5.3.3 Intra-SoC partitioning using a hypervisor

As shown in Section 5.3.2 there are still some software modules running on the same SoC which
will violate goal G3. To ensure freedom from interference on a single SoC we propose the use of
a hypervisor.

A hypervisor had to be selected which can run on the S32V234 SoC in the BlueBox, which
requires that the hypervisor implements ARMv8 hardware virtualization. Table 5.2 shows a list
of feasible hypervisors that can run on the S32V234, classifying them into hypervisor type and
porting effort. Type 2 hypervisors have low porting effort because the drivers are already ported
to the Linux kernel and the hypervisor runs on top of it. A type 1 bare-metal requires medium
porting effort where only CPU initialization and the serial communication device must be ported
to the hypervisor. Type 1 Monolithic and Type 1 Microkernel hypervisors require considerable
porting effort since all device drivers must be ported to the hypervisor. We chose for the Xen
hypervisor [68] to implement on the S32V234 SoC because even though porting effort is harder
than a type 2 a type 1 bare-metal hypervisor will yield better isolation because the common cause
failure of a failing Linux operating system is removed as shown in Figure 2.8.

Hypervisors also provide domain pausing functionality, which can be used to implement fail-
silent behavior [24]. This means when a fault occurs in a domain then the safety mechanism can
pause this domain immediately ensuring no failure occurs because of faulty data. Furthermore, it
ensures that the safety mechanism can take over the functionality of the domain without having
collisions with the data output. However, it should be noted that the non-atomic effects of pausing
a domain and the SoC peripheral interactions are unknown.

24 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

CHAPTER 5. SAFETY MECHANISM DESIGN

Table 5.2: Hypervisor comparison.

Name Type Porting effort
Xen hypervisor [68] Type 1 Bare-Metal | Medium, only the bare metal hypervisor
L4Re Micro-Hypervisor [74] Type 1 Microkernel | High all drivers must be ported
QNX Hypervisor [45] Type 1 Microkernel | High all drivers must be ported
Xvisor [58] Type 1 Monolithic | High all drivers must be ported
Linux KVM hypervisor [27] Type 2 Hosted Low, Linux base will be used
GHS INTEGRITY Multivisor [36] | Type 2 Hosted High all drivers must be ported
Siemens Jailhouse hypervisor [67] | Partitioning (2.4.4) | Low, Linux base will be used
domU Hypervisor domO Hardware
| Application l | Frontend DriverI E I Backend Driver I | Bridge | | Device driver I NIC

T T T
i send packet
—>

i request new shared page

>

grant new shared page

<
<€
@

opy packet to shared mem

send hypercall event

>

virtual interrupt

SR A N

request shared page pccess

<

grant|shared page access

route packet
— >

i
I
i
|
r
'
|
i
|
I
I
i
i
|
|
|
'
'
'
'
'
|
I
|
i pass packet
i

|

|

. send palcket

|App[ication I | Frontend DriverI Xen Backend DriverI | Bridge I I Device driverl NIC

Figure 5.5: Xen network para-virtualization

For the network virtualization however, it is well defined, the Xen hypervisor uses a para-
virtualized network device that uses a frontend driver in the guest domain (domU) and a backend
driver in the host domain of the Network Interface Card (NIC). The hypervisor provides a shared
memory page between the frontend and backend driver to send packets from the guest domain
to the NIC, the full interaction is shown in Figure 5.5. These network drivers support pause
functionality and do not suffer from deadlocks and starvation.

5.3.4 Distributed health monitors

To satisfy goal G1 relevant faults have to be observed. A health monitor running on the same
multicore or SoC can quickly observe details of the system components. Contrast with a remote
health monitor: either observes component output only or requires modifications and correct
operation of the component. The Apollo HAD framework provides a function health monitor
that monitors the functions of the framework as described in 2.1.2. However, the Apollo monitor
lacks some features: there is no support for monitoring components on a distributed system and
therefore some monitor data is missing, it suffers from interference other Apollo components and
can fail due to cascading failures which violates goal G3, SoC monitoring is limited to CAN bus
status and disk space monitoring, no SoC hardware monitoring features such as CPU self-test and
memory error rate are monitored.

Therefore, we introduce distributed health monitors that should run on each SoC on the NXP
BlueBox Prototyping platform: The LS2084A runs the Linux operating system and a platform
monitor should observe the Linux sysfs interface [50] to get information about device status and

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 25

CHAPTER 5. SAFETY MECHANISM DESIGN

the system bus and the Linux proc interface [11] should be observed to get CPU, memory, and
process information. The NXP S32 family of SoCs have a Fault Collection and Control Unit
(FCCU) which can be used for hardware monitoring. On the S32V234 the Xen Hypervisor should
be monitored, this should be done using the application programming interface Xen provides.
The hypervisor platform monitor should collect data about: CPU usage, memory usage for each
isolated domain and the status of each domain e.g. paused, running, or destroyed. Ideally, the
monitoring of the Xen hypervisor should be done on the M4 CPU in the S32V234 SoC. However,
due to time constraints, we have decided to monitor the Xen hypervisor in a separate domain
on the hypervisor. It should be noted that this workaround violates goal G3. The distributed
monitors publishes the monitored status information using DDS middleware to the diagnostics
path, so that all distributed monitors can monitor each other.

5.3.5 Distributed safety mechanism

The previous section described the ability to detect relevant faults for goal G1 through monitor-
ing. In this section, the distributed safety mechanism will be presented. The Vehicle-level Safety
Mechanism will be a DDS participant which runs on the S32R274 safety microcontroller. By util-
izing DDS all information from the Apollo function monitor, OS platform monitor, and hypervisor
platform mechanism can be processed. Furthermore, DDS allows the Vehicle-level Safety Mech-
anism to monitor the communication between the Apollo HAD framework functions. The control
module will be observed by the Vehicle-level Safety Mechanism to check for relevant faults as de-
scribed in goal G1. Furthermore, according to SOTIF the mechanism will analyze the HAD state
in the absence of system faults to detect potential hazards as needed for goal G2. An example
of a hazardous situation without faults is when a pedestrian is approaching the driveway, which
potentially can lead to a collision without system faults. A simple mitigation of the associated
SOTIF risk is to slow down and warn the driver.

The Vehicle-level Safety Mechanism consists of an observer, analyzer and a response task: The
observer task implements the DDS-XRCE [14] stack which processes the incoming DDS data and
passes them to the analyzer task. The analyzer task summarizes the autonomous vehicle software
to faulty and non-faulty state and should perform analysis of hazardous scenarios according to
SOTIF. The response task also implements the DDS-XRCE stack to publish data to DDS topics.
When a faulty state occurs in the autonomous vehicle software, the Vehicle-level Safety Mechanism
response module will decouple the existing control module from vehicle control. The Vehicle-level
Safety Mechanism will take over control and issues a safe stop.

For goal G1 the reaction time is of great importance. To ensure a low reaction time for the
distributed safety mechanism, communication paths must be as short as possible. This is done by
distributed safety mechanisms, an example is the hypervisor safety mechanism. The hypervisor
safety mechanism monitors the hypervisor domains. When a fault occurs the hypervisor safety
mechanism signals the DDS domain but also immediately pauses the faulty domain to shorten
reaction time. The Vehicle-level Safety Mechanism receives the fault signals and handles recovery
further.

26 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

Chapter 6

Experimental evaluation of the
safety mechanism

In Section 6.1, we explain the need of an automated driving simulator for experimental evaluation
of the distributed safety mechanism and we discuss our choice of the automated driving simulator.
In Section 6.2, we present our experimental setup. In section 6.4, we present the scenario that will
be used for evaluation. Finally, in Section 6.5, we analyze the effect of, our safety mechanism in
the case of a fault injection into the HAD framework.

6.1 Comparison of AD simulators for End-to-End verifica-
tion

To evaluate our safety mechanism the HAD framework should be tested in a realistic environment.
Using a real car in an urban area will expose the passengers of the car to unnecessary risk, the
costs are high, and repeatability is very hard. Table 6.1 shows an overview of different evaluation
methods to evaluate the safety mechanism. Using a real car compromises safety and MATLAB
[84] simulation is not realistic enough for testing the safety mechanism, therefore, we choose to
use end-to-end world simulation. A HAD framework as described in Section 2.1.1 requires sensory
input such as cameras, lidars, and radar to produce an actuation output to control a car. To
simulate the sensory input a virtual world, location, and an actuation signal is required.

Automated driving simulators implement Hardware-in-the-loop (HIL) simulation where the
outputs of a HAD framework will control the car in a virtual world where tests such as collisions
can be conducted without compromising safety. Furthermore, automated driving simulators can
also provide scenario testing facilities to ease the process of testing reproducible scenarios. We
have compiled a list of state of the art automated driving simulator in Table 6.2.

From this comparison, we choose to use the LG SVL Simulator [15]. Because it can simulate
all the sensors required for the Apollo HAD framework and provides a scenario testing API. Fur-
thermore, the LG SVL simulator provides full integration with the Apollo HAD which minimizes
the effort of setting up the End-to-End verification.

Table 6.1: Evaluation methods for testing automotive software

Methodology Realism | Safety | Cost efficiency | Repeatability
Driving a car in a urban area | ++-+ - - -

Driving a car on test track ++ + - +

MATLAB simulation + +++ +++ +++
End-to-End world simulation | ++ +++ +++ +++

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 27

CHAPTER 6. EXPERIMENTAL EVALUATION OF THE SAFETY MECHANISM

Table 6.2: AD Simulator feature comparison

ROS Scenario

Name Lidar | Radar | Camera | Traffic | .
interface tester

Carla Simulator [28] v

Gazebo [43]

LG SVL Automotive Simulator [15]

Microsoft AirSim [64]

Udacity driving car sim [72]

TORCS simulator [90]

SUMO [19]

= ENENEVPEENENEN

ANSYS [70]

TASS PreScan [17]

dSpace [13]

AVSimulation SCANeR [4]

Apollo Game Engine Based Simulation [3]

ASETRNENENANE IEE IR NANANAN
N NN SN 33] %% N[N X
ANANENENENENE SRR IANENANEN
S ANEHE RN R R YA NR AN NENRN
A NE N RN NE I R E NN AN

NINN NS

NVIDIA DRIVE Constellation [10]

6.2 Experimental setup

The experimental setup consists of an NXP BlueBox and an Alienware x86 [76] workstation. Figure
6.1 shows the interaction of the experimental setup, as described in Section 6.1 we choose for the
LG SVL simulator which runs on the Alienware and provides sensory input for the Apollo HAD
framework running on the NXP BlueBox. As described in Section 5.3.2 the perception machine
learning algorithms will run on the Alienware which has support for hardware acceleration. Figure
6.2 shows the modified distributed safety mechanism for use with our experimental setup.

H ,n.(»n‘.{s)/- U1/, Bl 4,.00YS - ."
CG SVL Simulator ‘ Apollo HAD Framework ¢

GPS, IMU,)
camera,
radar and

LIDAR

4= =}

brake, steer, (3.9m,P. 6mys)
throttle

Ethernet

Ubuntu 18.04 on Alienware NXP BlueBox
(Nvidia GPU, Intel i7) (LS2084A, S32V234, S32R274)

Figure 6.1: Experimental setup

28 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

H Surs) arem)jog 9IIYdA SNOWOUOINY I0J WSTURYIIN £19JeS poInqruisiq

s10STATOdA

6¢

Distributed Safety Concept with simulation v1
Roly-poly LTI project, 24-Jun-2019

Features:

1. distributed monitors for higher reliability
2. analysis of distributed HAD application protocol and state
3. isolation and faulty domain pause by hypervisor

Legend

Baidu Apollo

Distributed Safety Mechanism

Isolated c

Hardware

: Domain 0
I
'
| Hypervisor platform
Mechanism
>>>>> H - TR - - T O - . - ! Observe hi i
! ! Domain U ' Vehicle-level Safety Mechanism
' '
I '
Perception DDS-XRCE Agent 1 E Analyze Observe
Scenario i
Testing) .) - . . 05 Platform Function 08 Platform |
ROSBrid. t ROS2 Brid ! Response Analyze
Framework ridge suite ridge Localization | | Planning Prediction] Control " - ' P vz
'
LG | i R
. ROS1 ROS2 ROS1 ROS2 ' ROS1 ros2 |1 DDS-XRCE Client esponse
World simulator |
o
'
Docker Docker Docker ’ Linux | H i ’ Linux | DDS-XRCE Client
R B ' B R i LSS —=
Linux Linux Xen Hypervisor FreeRTOS
Alienware LS2084A S32v234 S32R274
6xi7 Nvidia GPU 8x A72 4x A53 3x €200
NIC NIC NIC NIC
NXP BlueBox
Switch

Figure 6.2:

Distributed Safety Mechanism for Evaluation

WSINVHOHWN ALHAVS HH.L A0 NOLLVNTVAA TVINANIHAIXH "9 HALdVHD

CHAPTER 6. EXPERIMENTAL EVALUATION OF THE SAFETY MECHANISM

In comparison to the original distributed safety mechanism as shown in Figure 5.4. The
experimental setup uses both ROS1 and ROS2 this is because Apollo version 3.0 does support
ROS2 nor DDS. Our solution for this was using the Rosbridge suite, which acts as a bridge
between the ROS1 and ROS2 domain which allows seamless communication between ROS1 and
ROS2 nodes. Apollo version 3.5 uses the CyberRT middleware which is compatible with DDS,
unfortunately during this study, Apollo 3.5 did not support ARM-based platforms therefore, we
choose to use Apollo 3.0.

Furthermore, the experimental setup is using a scenario testing framework that communicates
with the LG SVL simulator API and the Apollo ROS nodes to create scenarios, execute them, and
validate whether the vehicle caused any collisions and the destination waypoint of the scenario is
reached on time.

6.3 Performance characteristics of experimental setup

With the experimental setup complete, performance characteristics have been gathered to give
insight how state of the art HAD software frameworks and middleware performs on the NXP
BlueBox in terms of bandwidth, latency, and message rates. This information can validate per-
formance requirements of S32R274 to execute the vehicle-level safety mechanism. Our latency
measurements on S32R expose the delays of 8.36ms, suggesting this SoC is capable of attaining
the 100Hz message rate required for the vehicle-level safety mechanism.

6.3.1 Apollo HAD framework bandwidth

As stated in Section 5.3.1 we have chosen to use the Apollo HAD framework for our experimental
setup. With the experimental setup in place we have profiled the Apollo ROS topics and visualized
them using the same functional architecture introduced in Section 2.1.1. Figure 6.3 shows the
functional components and their bandwidth usage and message production rate. The profiling gave
interesting insight into the internal update rate of the Apollo HAD which is 10 Hz. Which seems to
be low but do consider that version 3.0 of Apollo is designed for closed venue autonomous driving
with a speed limit of 50 km/h. Therefore, it should be noted that more advanced functionality
requires a higher message rate and bandwidth requirements. However the message and rate of
100Hz with a bandwidth of 50KB/s to control the car will probably will not change, and is within
the specification the S32R274 performance to execute the vehicle-level safety platform.

20MB/s @ 10Hz . 50KB/s @ 10Hz Q IIO
——> Perception
LiDAR 70KB/st @180Hz
R ot 70KB/s _ 0.3MB/s . 15MB/s
20MBls @ 10Hz Localization @180H7 Prediction @ 1012 Planning @ 10H7 Control
50KB/s
HMI
S 100Hz
Navigation WERS @
T

)

Figure 6.3: Apollo 3.0 component bandwidth and message rates

6.3.2 End-to-End latency between DSM components

As shown on Figure 6.2 communication from a component on the LS2084A SoC to the S34R27
SoC has to go through the NIC, the DDS-XRCE agent [14], and the Rosbridge suite this will

30 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

CHAPTER 6. EXPERIMENTAL EVALUATION OF THE SAFETY MECHANISM

yield increase in latency when sending a message. Therefore, we have measured to end-to-end
latency by sending a message from the LS2084A SoC to the S32R274 and back and measure the
time it took. The measurement was done by sending a 16 byte message 10 times per second for 1
hour. Figure 6.4 shows the resulting end-to-end latency distribution. The max latency measured
was 12.32ms, the 99th percentile latency (shown with green dashed line) was 8.36ms, the possible
cause for the difference of approx. 4ms between the 99th percentile and max latency might be
related that our experimental setup was not using Time-Sensitive Networking and the LS2084A
is not a real-time SoC.

100 -

90 1

80

70 A

60 1

50

401

30 A

201

Percentage of packets delivered within

104

e w9

T T T
< 1 > 1 < 1 N 1
~ ~ o o =] =] — — o o

— — — — — —

< 1
© ©

Latency (ms)

Figure 6.4: DDS & DDS-XRCE End-to-End latency

6.4 Safety scenarios

To evaluate the distributed safety mechanism we create a traffic scenario in the LG SVL simulator
using our scenario testing framework. Traffic scenarios can differ from fairly complex to simplistic
scenarios, we choose for a simple scenario because it suffices, to analyze the behavior of autonomous
vehicle software in a realistic safety critical situation. The base scenario is shown in figure 6.5
it consists of a two-lane road. The ego vehicle (shown as an orange vehicle) is controlled by the
Apollo HAD framework and has to overtake the stationary vehicle (shown as a blue vehicle) by lane
changing to reach the destination. This scenario is defined in Listing 6.1 in the JavaScript Object
Notation (JSON) which will be used by the Python-based scenario testing framework to construct
the scenario. The scenario definition contains the waypoints that the ego vehicle must pass, the
waypoints of non-ego vehicles, and the fault injection mechanism. Setting up the traffic scenario in
Apollo yielded that Apollo stopped the car behind the stationary vehicle because routing algorithm
disallowed lane changing. The solution for this was to setup a trajectory using 4 waypoints: the
starting waypoint, go straight waypoint, a lane change waypoint, and a destination waypoint. The
Apollo HAD framework behavior will be tested under 3 scenarios: normal circumstances, a fault
injection, and a safe stop using the distributed safety mechanism.

Scenario 1: Normal scenario

The normal scenario consists of a two-lane road, the ego vehicle controlled by the Apollo HAD
framework overtakes a stationary vehicle by lane changing.

The expected behavior is that the ego vehicle reaches the destination without hitting the
stationary vehicle.

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 31

© 00 N O Ut W N

=
o

[
—

12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46

47
48

CHAPTER 6. EXPERIMENTAL EVALUATION OF THE SAFETY MECHANISM

—~

"scene": "SanFrancisco",
"sim_host": "localhost",
"sim_port": 8181,
"apollo_host": "localhost",
"apollo_port": 9090,

"routing_request": {

"module_name": "dreamview"},

"waypoint": [{"s": 18.664396579325256, "pose": {"y": 4182649.99, "x": 553025.0, "z
": 0.0}, "id": "lane_23"},

{"s": 54.9611313526677, "pose": {"y": 4182612.34066193, "x": 552988.0363219585, "z
": 0.0}, "id": "lane_23"},

{"s": 85.60216757113933, "pose": {"y": 4182592.3711510208, "x": 552973.5053166781,
"z": 0.0}, "id": "lane_22"},

{"s": 237.86915881972186, "pose": {"y": 4182482.4963298393, "x": 552859.2115879473

"z": 0.0}, "id": "lane_23"}],

}s

"ego_state": {
"transform": {"position": {"x":205.597808837891,
"y":10.1244478225708,
"z":7.94014930725098},
"rotation": {"x":5.73239667573944E-05,
"y":271.46484375,
"z":1.12486395664746E-05}},
"velocity": {"x": 0.0, "y": 0.0, "z": 0.0},
"vehicle_model": "XE_Rigged-apollo",
"sensors": ["velodyne", "GPS", "Telephoto Camera", "Main Camera", "IMU"]

}s

"npc_static": {

"npc_model": "SUV",

"transform": {"position": {"x": 143.416275024414,
"y": 10.1233310699463,
"z": 8.88082647323608},

"rotation": {"x": 359.973022460938,

"y": 269.328979492188,
"z": 0.0046530170366168}}

}s

"fault_injection": [{
"position": {"x": 552981.57, "y": 4182603.65},
"target": "root@192.168.100.102:22",
"command": ["nohup stress -c 48>nohup.out 2>error.out &", "iconv -c -f utf8 -t
ascii <error.out >error.ascii", '"cat error.ascii"],
"message": "stress S32V cpu"

1,

"clear_fault": [{"target": "root@192.168.100.102:22",
"command": ["killall stress >/dev/null 2>error.out", "iconv -c -f utf8
-t ascii <error.out >error.ascii", "cat error.ascii"],
"message": "kill stress on target"}],

Listing 6.1: Safety traffic scenario definition

32

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

CHAPTER 6. EXPERIMENTAL EVALUATION OF THE SAFETY MECHANISM

Figure 6.5: Safety traffic scenario

Scenario 2: Fault injection scenario

The fault injection scenario consists of a two-lane road, the ego vehicle controlled by the Apollo
HAD framework overtakes a stationary vehicle by lane changing. During the scenario, a CPU
stress fault is injected in the hypervisor guest domain on the S32V234 SoC.

The expected behavior is that the ego vehicle starts to wobble after the fault injection, because
the control calculations can not keep up and therefore overshoots and eventually collides with the
stationary vehicle or other objects.

Scenario 3: Safe stop scenario

The safe stop scenario is the same scenario as scenario 2, however, the distributed safety mechanism
is now enabled.

The expected behavior is that the distributed safety mechanism will pause the faulty guest
domain when the fault is injected in the hypervisor guest domain on the S32V234 SoC. Further-
more, the distributed safety mechanism will take over the control from the control task running
on the S32V234. And issues safe-stop control commands to the ego vehicle to bring it to a safe
stop without causing a collision.

6.5 Fault injection experiment

The experiment consisted of executing the 3 different scenarios as described in Section 6.4 using
our scenario testing framework. The fault injection in scenarios 2 and 3 is done using the stress
workload generator [75], ideally, we would have used a more sophisticated fault injection mech-
anism such as [32] to evaluate the fault detection coverage of our distributed safety mechanism.
However, due to time constraints, we only used the stress CPU workload generator. The outcomes
of 3 different scenarios where as follows:

Scenario 1 which acts as the baseline went as expected, the ego vehicle passes the stationary
vehicle without colliding into the stationary vehicle or another object.

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 33

CHAPTER 6. EXPERIMENTAL EVALUATION OF THE SAFETY MECHANISM

S32R274

Vehicle-level
Safety Mechanism

Alienware

| DDS-XRCE agent l | Rosbridge suite I | LG Simulator I
T T T

| Apollo Perception I
T

S32v234

Hypervisor
Platform Mechanism

Apollo Control in
Xen hypervisor DomU

LS2084A

Apollo
Localization, Planning,
Prediction, Routing

connect to
DDS-XRCE

gent

connect to

DDS-XRCE agent

.
sensor and camera data,

| launch DomU
r

Apollo perct

ptiol

1 result

Apollo control msg

path plan

e
DomuU

system info

Apollo control msg

Xen system info

DomuU

system info

Xen system info

fault injection

DomuU

system info

safe stop

cont]

rol msg

S32R takes over

pause DomU

q

Domu is paused
'

Vehicle-level
Safety Mechanism

| DDS-XRCE agent I

I Rosbridge suite I

| LG Simulator I IApoIIo Perception I

Hypervisor
Platform Mechanism

L
Apollo Control in
Xen hypervisor DomU

Apollo
Localization, Planning,
Prediction, Routing

Figure 6.6: Safe-stop sequence diagram

Scenario 2 also went as expected, the ego vehicle starts wobbling when the fault is injected
into the S32V234 guest domain and collides into an object. It should be noted during multiple
executions the crash behavior is non-deterministic because it hits either the stationary vehicle or
a static object inside LG SVL simulator virtual world.

In scenario 3 the distributed safety mechanism is enabled therefore we should expect different
outcome then scenario 2. Figure 6.6 shows the sequence diagram of the expected behavior of
the distributed safety mechanism. The distributed safety mechanism isolates the Apollo control
module into an isolated domain called domU. The LG SVL simulator provides sensor and camera
data to the Apollo perception module and the Apollo HAD framework calculates a path plan. The
path plan goes to the Apollo control which calculates throttle, brake and steering wheel values, the
control data will be published to LG simulator for car actuation but also to the vehicle-level safety
mechanism through the Rosbridge suite and the DDS-XRCE agent for monitoring. Eventually, a
fault will be injected into the S32V234 DomU domain which puts DomU in a faulty state. The
hypervisor platform mechanism detects that DomU is faulty and pauses the domain. Immediately
the hypervisor platform monitor publishes the DomU system info to the DDS world. So that the
automotive-level vehicle monitor will be informed about the faulty domain, the automotive-level
vehicle monitor takes over control and initiates a safe stop.

6.6 Experiment analysis

The impact of the distributed safety mechanism is reflected by the experimental setup executing
a scenario where a fault gets injected. The observation of the experiment was that the ego vehicle
will do a safe stop in the occurrence of a fault. The fault gets detected in the distributed system,
by both the vehicle-level safety mechanism and the hypervisor platform mechanism. The reaction
depends on which system detects the fault first. The hypervisor platform mechanism observes the
CPU load of the guest domain and analyzes whether the CPU load gets too high. When the CPU
load is too high the hypervisor platform mechanism pauses the faulty domain to ensure fail-silent
behavior and informs the vehicle-level safety mechanism a fault has occurred. But the vehicle-
level safety mechanism does not only rely on the hypervisor platform mechanism to detect the
faults in our experiment. The vehicle-level safety mechanism also monitors the control topic inside
the DDS domain, we observed that the fault injection causes the rate of messages from control
decreases. Therefore, the vehicle-level safety mechanism also detects a fault in the autonomous

34 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

CHAPTER 6. EXPERIMENTAL EVALUATION OF THE SAFETY MECHANISM

vehicle software in the experiment. The experimental evaluation showcased the working of the
distributed safety mechanism. However, it should be noted that scenario 3 the safe stop scenario
had some anomalies such as:

e Double stop. Sometimes during the safe stop we encountered that the car gets brought to a
stop and then vehicle-level safety mechanism stops applying brake and then after a second
it reapplies it.

e Control message rate. The LG SVL simulator requires that a control message is send every
10ms. If the vehicle-level safety mechanism could not keep up with this rate, the car control
is disengaged.

e DDS-XRCE agent dependence. When the DDS-XRCE agent was not running the vehicle-
level safety mechanism was unable to communicate to other DDS nodes, because it is highly
dependent on the agent see figure 5.1. Therefore, the safe stop was not being executed
correctly.

The presented results indicate that using a publish-subscribe middleware such as DDS and
a hypervisor can provide a good basis for safety mechanisms with support for: distributed sys-
tems, strong isolation, fail-silent behavior, and analysis of hazardous scenarios from the SOTIF
specification.

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 35

Chapter 7

Conclusion

One of the key safety goals of autonomous vehicles is to avoid colliding with obstacles. Based on
our state of the art study, we identified three challenges that can compromise this safety goal:
detectability of faults in a distributed system, hazardous situations in the absence of faults, and
cascading failures. In this study, we set the goal to design a distributed safety mechanism address-
ing these three challenges and to identify available software tools to build this mechanism. The
design methodology based on fault injection in a simulated environment was selected as the most
promising approach for an industry-relevant result. As a criterion of success for our mechanism
evaluation, we defined meeting the safety goal of avoiding collisions. To address the challenge
of detecting faults in multiple distributed machines and analyzing hazardous situations in the
absence of faults, our safety mechanism needs to reliably read the state of distributed systems.
The DDS middleware addresses these requirements, while also meeting industry reliability and
security standards. Interestingly, the DDS-XRCE subset allows running the safety mechanism
functionality on safety cores with the highest integrity level. Furthermore, our safety mechanism
incorporates hardware-supported hypervisors as a means of isolating faults and blocking propaga-
tion of cascading failures. During our experiments, we noticed that the hypervisor can also quickly
pause execution of a software stack including an operating system. Therefore, hypervisors turned
out to be not only useful in ensuring freedom from interference, but also in implementing a fail-
silent behavior of faulty software stacks. The design of the distributed safety mechanism was
evaluated using an end-to-end automotive simulator modeling a repeatable traffic scenario. Dur-
ing the scenario execution, a Python testing framework injected a fault of overloading a processor,
leading the simulated vehicle to crash in the absence of safety mechanisms. When the scenario was
repeated with our safety mechanism enabled, the fault was detected and the mechanism stopped
the car before any collision occurred. Our evaluation of the distributed safety mechanism shows
the potential of reliable middleware and hypervisor in handling faults. Furthermore, the DDS
middleware enables the safety mechanism to read HAD software state for handling hazardous
scenarios in the absence of faults.

36 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

Chapter 8

Future work

Our study covered only few safety challenges in autonomous vehicles. The future research direc-
tions and work listed below present opportunities for deeper and broader analysis:

1.

Study applicability of well-known challenge-response mechanisms [5] for the distributed
safety mechanisms. We presented a safety mechanism, where a probable failure in a lower
safety component is addressed by a mechanism running on a higher safety component. To
handle a less-probable fault model in the higher safety component, however, the distributed
safety mechanism can continuously challenge the high-safety component. If no or incorrect
response is returned on time, the lower safety mechanism can inform the driver or bring the
system to the safe state.

Evaluate (hardware) acceleration or (software) optimization options for running a full DDS
stack on a safety core. Modern safety cores, such as ARM Cortex-M7 or Cortex-R52, do
not have processing power to run a full-stack DDS middleware protocol, which is the reason
why we used DDS-XRCE. However, DDS-XRCE suffers from its dependency on the agent,
which runs on a less safer machine.

New SOTTIF-specific safety mechanisms to address fault-free hazardous scenarios in auto-
mated driving. For example, sensor data analysis can identify limitations of the sensor
technology in certain situations, such as a dirt spot on a camera lens.

Analysis of non-atomic effects in hypervisor-based safety mechanisms. For instance, a
hypervisor-driven shut-down of a domain in a complex SoC can suffer from ongoing on-
chip operations outside of processor cores. Network-on-chip, caches, and peripheral devices
may be busy with a long operation, when the hypervisor shuts down a domain. A separate
study is required to understand if such operations can be properly finished without causing
deadlocks or starvation.

Test the retargetability of the presented mechanism on other platforms, such as physical
vehicles, and HAD frameworks, such as Autoware [41]. Furthermore, a different middleware
software, such as Apollo Cyber RT [29], is a good candidate for evaluation of retargetability.

Study and design options for more advanced safe stop operations. For example, a safe stop
within the lane would be more appropriate than the presented handbrake-like operation.
However, such a safe stop would need to detect working sensors and actively steer the
vehicle despite faults in other subsystems.

We intend to publish selected topics from this project in a scientific conference or workshop.

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 37

Bibliography

[1] ANSYS SCADE safing gate and the doer-checker architecture. https://www.ansys.com/-/
media/ansys/corporate/resourcelibrary/article/drive-safely-aa-v12-il.pdf. 9,
10
[2] Automotive Electronics Council. https://www.iso.org/standard/71691.html. 7
[3] Autonomous driving simulation with unity (presented by baidu usa). https://www.
gdcvault.com/browse/gdc-19/play/1026207. 28
[4] Avsimulation - scaner studio. 28
[5] Challenge-response watchdog mechanism in dSpace MicroAutoBox II computers.
https://www.dspace.com/en/inc/home/products/hw/micautob/microautobox2/mabx_
watchdog.cfm. 37
6] EcoTwin truck platooning project. https://www.youtube.com/watch?v=uf_1vbh75y0&
p y y
feature=youtu.be. 10
[7] Intel/Mobileye Responsibility-Sensitive Safety. https://www.mobileye.com/
responsibility-sensitive-safety/. 9, 10
[8] MIT Moral Machine. http://moralmachine.mit.edu/. 10
[9] Toyota Guardian. https://global.toyota/en/newsroom/corporate/26069806.html. 9,
10
[10] Virtual-based safety testing for self-driving cars from nvidia drive constellation. 28
11] proc(5) Linux User’s Manual, 4.16 edition, Apr 2018. Available at http://manpages.
p pag
courier-mta.org/htmlman5/proc.5.html. 26
12] California Car Accident Law. https://www.hg.org/car-accident-law-california.asp,
p g.01rg p
2019. [Online; accessed 31-May-2019]. 8, 10
13] dSPACE Hardware-in-the-Loop Test Systems. https://www.dspace.com/shared/
p P
data/pdf/2019/dSPACE-Hardware-in-the-Loop-Systems_Business-field-brochure_
01-2019_English.pdf, Jan 2019. 28
[14] eProsima FastRTPS and DDS-XRCE implementations. https://github.com/eProsinma,
May 2019. 21, 26, 30
[15] LG SVL simulator documentation. https://wuw.lgsvlsimulator.com/docs/
getting-started/, May 2019. 27, 28
[16] NVIDIA DRIVE - Software. https://developer.nvidia.com/drive/drive-software,
May 2019. 5
[17] Prescan. https://tass.plm.automation.siemens.com/prescan, May 2019. 28
38 A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/drive-safely-aa-v12-i1.pdf
https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/drive-safely-aa-v12-i1.pdf
https://www.iso.org/standard/71691.html
https://www.gdcvault.com/browse/gdc-19/play/1026207
https://www.gdcvault.com/browse/gdc-19/play/1026207
https://www.dspace.com/en/inc/home/products/hw/micautob/microautobox2/mabx_watchdog.cfm
https://www.dspace.com/en/inc/home/products/hw/micautob/microautobox2/mabx_watchdog.cfm
https://www.youtube.com/watch?v=uf_1vbh75y0&feature=youtu.be
https://www.youtube.com/watch?v=uf_1vbh75y0&feature=youtu.be
https://www.mobileye.com/responsibility-sensitive-safety/
https://www.mobileye.com/responsibility-sensitive-safety/
http://moralmachine.mit.edu/
https://global.toyota/en/newsroom/corporate/26069806.html
http://manpages.courier-mta.org/htmlman5/proc.5.html
http://manpages.courier-mta.org/htmlman5/proc.5.html
https://www.hg.org/car-accident-law-california.asp
https://www.dspace.com/shared/data/pdf/2019/dSPACE-Hardware-in-the-Loop-Systems_Business-field-brochure_01-2019_English.pdf
https://www.dspace.com/shared/data/pdf/2019/dSPACE-Hardware-in-the-Loop-Systems_Business-field-brochure_01-2019_English.pdf
https://www.dspace.com/shared/data/pdf/2019/dSPACE-Hardware-in-the-Loop-Systems_Business-field-brochure_01-2019_English.pdf
https://github.com/eProsima
https://www.lgsvlsimulator.com/docs/getting-started/
https://www.lgsvlsimulator.com/docs/getting-started/
https://developer.nvidia.com/drive/drive-software
https://tass.plm.automation.siemens.com/prescan

BIBLIOGRAPHY

[18]
[19]

[20]

[21]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[33]

[34]

[35]

Baidu. Apollo an open autonomous driving platform. http://apollo.auto/, 2018. 4, 5

Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. SUMO-simulation
of urban mobility: an overview. In Proceedings of SIMUL 2011, The Third International
Conference on Advances in System Simulation. ThinkMind, 2011. 28

Lucia Lo Bello. The case for ethernet in automotive communications. ACM SIGBED Review,
8(4):7-15, 2011. 20

T. Bijlsma, M. Kwakkernaat, and M. Mnatsakanyan. A real-time multi-sensor fusion platform
for automated driving application development. In 2015 IEEE 13th International Conference
on Industrial Informatics (INDIN), pages 1372-1377, July 2015. 12

Tjerk Bijlsma and Teun Hendriks. A fail-operational truck platooning architecture. 2017
IEEF Intelligent Vehicles Symposium (IV), pages 1819-1826, 2017. 4, 5

K. Birman and T. Joseph. Exploiting Virtual Synchrony in Distributed Systems. SIGOPS
Oper. Syst. Rev., 21(5):123-138, November 1987. 11

F. V. Brasileiro, P. D. Ezhilchelvan, S. K. Shrivastava, N. A. Speirs, and S. Tao. Implementing
fail-silent nodes for distributed systems. IEEE Transactions on Computers, 45(11):1226-1238,
Nov 1996. 24

Alan Burns and Robert Davis. Mixed criticality systems-a review. Department of Computer
Science, University of York, Tech. Rep, pages 1-69, 2013. 18

Z. Chen, T. Ellis, and S. A. Velastin. Vehicle detection, tracking and classification in urban
traffic. In 2012 15th International IEEE Conference on Intelligent Transportation Systems,
pages 951-956, Sep. 2012. 5

Christoffer Dall and Jason Nieh. KVM/ARM: the design and implementation of the linux
ARM hypervisor. In ACM SIGARCH Computer Architecture News, volume 42, pages 333—
348. ACM, 2014. 25

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
CARLA: An open urban driving simulator. arXiv preprint arXiv:1711.03938, 2017. 28

Natasha Dsouza and Ning Qu. Apollo Cyber RT The Runtime Framework Youve Been
Waiting For. https://link.medium.com/fE7aFPAAdX, Feb 2019. 5, 37

C. Ebert and C. Jones. Embedded Software: Facts, Figures, and Future. Computer, 42(4):42—
52, April 2009. 18

J. Farkas, L. L. Bello, and C. Gunther. Time-Sensitive Networking Standards. IEEE Com-
munications Standards Magazine, 2(2):20-21, JUNE 2018. 11

Y. Fu, A. Terechko, T. Bijlsma, P. J. L. Cuijpers, J. Redegeld, and A. O. Ors. A Retargetable
Fault Injection Framework for Safety Validation of Autonomous Vehicles. In 2019 IEEFE
International Conference on Software Architecture Companion (ICSA-C), pages 69-76, March
2019. 5, 33

Manfred Grosmann, Mario Hirz, and Jurgen Fabian. Efficient application of multi-core pro-
cessors as substitute of the E-Gas (Etc) monitoring concept. 2016 SAI Computing Conference
(SAI), pages 913-918, 2016. 9

Part Guide. Intel® 64 and ia-32 architectures software developers manual. Volume 3B:
System programming Guide, Part, 2, 2011. 5, 21

Emme Hall. Hands-on with Comma.ai’s add-on Level 2 autonomous tech, Aug 2018. 5

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 39

http://apollo.auto/
https://link.medium.com/fE7aFPAAdX

BIBLIOGRAPHY

[36]

[37]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

Green Hills. Integrity multivisor. https://www.ghs.com/products/rtos/integrity_
virtualization.html, 2019. 25

J. Hwang, S. Suh, S. Heo, C. Park, J. Ryu, S. Park, and C. Kim. Xen on ARM: System
Virtualization Using Xen Hypervisor for ARM-Based Secure Mobile Phones. In 2008 5th
IEEE Consumer Communications and Networking Conference, pages 257261, Jan 2008. 13

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related
systems. Standard, The International Electrotechnical Commission, 2008. 7

ISO 26262: Road Vehicles : Functional Safety. Standard, International Organization for
Standardization, Geneva, CH, September 2011. v, v, 7, 10, 14, 15, 18

ISO/PAS 21448: Road vehicles — Safety of the intended functionality. Standard, International
Organization for Standardization, Geneva, CH, January 2019. 7, 10, 18

Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato Hirabayashi, Yuki
Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya Azumi. Autoware
on Board: Enabling Autonomous Vehicles with Embedded Systems. In Proceedings of the 9th
ACM/IEFEFE International Conference on Cyber-Physical Systems, ICCPS '18, pages 287-296,
Piscataway, NJ, USA, 2018. IEEE Press. 5, 37

D. Kleidermacher and M. Wolf. MILS virtualization for Integrated Modular Avionics. In 2008
IEEE/AIAA 27th Digital Avionics Systems Conference, pages 1.C.3-1-1.C.3-8, Oct 2008. 14

Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2149-2154. IEEE, 2004. 28

Philip Koopman. The Big Picture for Self-Driving Car Safety. https://www.slideshare.
net/PhilipKoopmanl/the-big-picture-for-selfdriving-car-safety-standards,
2019. 8

Rob Krten. Getting started with QNX Neutrino 2: a guide for realtime programmers. PARSE
Software Devices, 1999. 15, 25

D. Lopez and M. Clairet. Fail silent and robust power management architectures to enable
autonomous driving embedded systems. In 2016 International Conference on FElectrical Sys-
tems for Aircraft, Railway, Ship Propulsion and Road Vehicles International Transportation
Electrification Conference (ESARS-ITEC), pages 1-6, Nov 2016. 8

Nicholas Mc Guire. Linux for safety critical systems in IEC 61508 context. In Proceedings of
the Ninth Real-Time Linux Workshop in Linz, 2007. 5

Dirk Merkel. Docker: lightweight linux containers for consistent development and deployment.
Linuz Journal, 2014(239):2, 2014. 12

R. Mijat and A. Nightingale. Virtualization is coming to a platform near you. ARM white
paper, 2011. 13

Patrick Mochel. The sysfs filesystem. In Linuz Symposium, page 313, 2005. 25
Robert N Charette. This Car Runs on Code. IEEFE Spectrum, 46, February 2009. 1

Arne Nordmann and Ingo Ltkebohle. micro-ROS Overview. https://micro-ros.github.
io/docs/home/, Apr 2019. 21

NXP Semiconductors. S32V234 Reference Manual, Sep 2017. 24

40

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

https://www.ghs.com/products/rtos/integrity_virtualization.html
https://www.ghs.com/products/rtos/integrity_virtualization.html
https://www.slideshare.net/PhilipKoopman1/the-big-picture-for-selfdriving-car-safety-standards
https://www.slideshare.net/PhilipKoopman1/the-big-picture-for-selfdriving-car-safety-standards
https://micro-ros.github.io/docs/home/
https://micro-ros.github.io/docs/home/

BIBLIOGRAPHY

[54]

[55]

[56]

[65]

[66]

[67]

[68]

Object Management Group (OMG). DDS for eXtremely Resource Constrained Environments
Specification, Version 1.0beta2. OMG Document Number ptc/19-03-27 (https://www.omg.
org/spec/DDS-XRCE/1.0/Beta2/), 2019. viii, 11, 21

Sebastian Ohl. Staying in lane on highways with EB robinos. May 2017. 4, 5

U. Ozguner, C. Stiller, and K. Redmill. Systems for Safety and Autonomous Behavior in
Cars: The DARPA Grand Challenge Experience. Proceedings of the IEEE, 95(2):397-412,
Feb 2007. 2, 18

Gerardo Pardo-Castellote. OMG Data-Distribution Service (DDS): Architectural Overview.
Technical report, REAL-TIME INNOVATIONS INC SUNNYVALE CA, 2004. 11

Anup Patel, Mai Daftedar, Mohamed Shalan, and M Watheq El-Kharashi. Embedded hy-
pervisor xvisor: A comparative analysis. In 2015 23rd Furomicro International Conference
on Parallel, Distributed, and Network-Based Processing, pages 682—691. IEEE, 2015. 25

Gerald J. Popek and Robert P. Goldberg. Formal Requirements for Virtualizable Third
Generation Architectures. Commun. ACM, 17(7):412-421, July 1974. 14

Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y. Ng. ROS: an open-source Robot Operating System. In ICRA
Workshop on Open Source Software, 2009. 11

M. Raho, A. Spyridakis, M. Paolino, and D. Raho. KVM, Xen and Docker: A performance
analysis for ARM based NFV and cloud computing. In 2015 IEEE 3rd Workshop on Advances
in Information, Electronic and Electrical Engineering (AIEEE), pages 1-8, Nov 2015. 13

Eder Santana and George Hotz. Learning a driving simulator. arXiv preprint
arXiw:1608.01250, 2016. 5

M. Satyanarayanan. Edge computing for situational awareness. In 2017 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN), pages 1-6, June 2017. 8

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual
and physical simulation for autonomous vehicles. In Field and service robotics, pages 621-635.
Springer, 2018. 28

Ed Sikha, Rick Simpson, C May, and H Warren. The PowerPC Architecture: A specification
for a new family of RISC processors. Morgan Kaufmann Publishers, 1994. 16

S Sing. Critical reasons for crashes investigated in the national motor vehicle crash causation
survey. Feb 2015. 1

Valentine Sinitsyn. Jailhouse. Linuz Journal, 2015(252):2, 2015. 14, 25

S. Stabellini. Xen ARM with Virtualization Extensions whitepaper. https:
//wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions_whitepaper,

Apr 2014. 24, 25

SAE Standard. J3016.. Tazonomy and Definitions for Terms Related to On-Road Motor
Vehicle Automated Driving Systems, 4:593-598, 2014. viii, 3

Tadeusz Stolarski, Yuji Nakasone, and Shigeka Yoshimoto. Engineering analysis with ANSYS
software. Butterworth-Heinemann, 2018. 28

Sebouh Toumassian, Rico Werner, and Axel Sikora. Performance measurements for hyper-
visors on embedded ARM processors. pages 851-855, 09 2016. 14

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors 41

https://www.omg.org/spec/DDS-XRCE/1.0/Beta2/
https://www.omg.org/spec/DDS-XRCE/1.0/Beta2/
https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions_whitepaper
https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions_whitepaper

BIBLIOGRAPHY

[72]

73]

Udacity. udacity /self-driving-car-sim. https://github.com/udacity/
self-driving-car-sim, Jan 2019. 28

Ministerie van Algemene Zaken. Wie is aansprakelijk bij een ongeluk met een zelfrijdende
auto?, Oct 2018. 10

Alexander Warg and Adam Lackorzynski. The Fiasco. OC Kernel and the L4 Runtime
environment (L4Re). avail. 25

Amos Waterland. stress is a deliberately simple workload generator for POSIX systems.
https://people.seas.harvard.edu/~apw/stress/, Jul 2014. 33

Wikipedia. Alienware. https://en.wikipedia.org/wiki/Alienware, Jun 2019. 28

Wikipedia. Automotive Electronics Council. https://en.wikipedia.org/wiki/
Automotive_Electronics_Council, 2019. 7

Wikipedia. Built-In Self-Test (BIST). https://en.wikipedia.org/wiki/Built-in_
self-test, 2019. 8

Wikipedia. Experiment. http://en.wikipedia.org/w/index.php?title=Experiment&
01did=893555614, 2019. [Online; accessed 31-May-2019]. 19

Wikipedia. Fault model. https://en.wikipedia.org/wiki/Fault_model, 2019. 5

Wikipedia. Formal methods. http://en.wikipedia.org/w/index.php?title=Formal,
20methods&o1did=896120926, 2019. [Online; accessed 31-May-2019]. 19

Wikipedia. Hypervisor. https://en.wikipedia.org/wiki/Hypervisor, Jun 2019. v

Wikipedia. Manufacture- or user-configurable moral in a self-driving car, Y.N. Harari 21
lessons for the 21 century. https://en.wikipedia.org/wiki/21_Lessons_for_the_21st_
Century, 2019. 10

Wikipedia. MATLAB. https://en.wikipedia.org/wiki/MATLAB, Jun 2019. 27

Wikipedia. NCAP New Car Assessment Program, government agency, not a standard.
https://en.wikipedia.org/wiki/New_Car_Assessment_Program, 2019. 10

Wikipedia. PPAP - Production Part Approval Process. https://en.wikipedia.org/wiki/
Production_part_approval_process, 2019. 10

Wikipedia. Reliability Engineering. https://en.wikipedia.org/wiki/Reliability_
engineering, 2019. 7

Wikipedia. Trolley problem. https://en.wikipedia.org/wiki/Trolley_problem, 2019. §,
10

EGAS Workgroup. Standardized E-Gas Monitoring Concept for Gasoline and Diesel Engine
Control Units. Version, 6:57, 2015. viii, 9, 10, 22

Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis, Rémi Coulom,
and Andrew Sumner. Torcs, the open racing car simulator. Software available at http://torcs.
sourceforge. net, 4(6), 2000. 28

Junko Yoshida. NXP’s Reger Redefines CTO’s Role, Jan 2019. viii, 15

42

A Distributed Safety Mechanism for Autonomous Vehicle Software Using Hypervisors

https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://people.seas.harvard.edu/~apw/stress/
https://en.wikipedia.org/wiki/Alienware
https://en.wikipedia.org/wiki/Automotive_Electronics_Council
https://en.wikipedia.org/wiki/Automotive_Electronics_Council
https://en.wikipedia.org/wiki/Built-in_self-test
https://en.wikipedia.org/wiki/Built-in_self-test
http://en.wikipedia.org/w/index.php?title=Experiment&oldid=893555614
http://en.wikipedia.org/w/index.php?title=Experiment&oldid=893555614
https://en.wikipedia.org/wiki/Fault_model
http://en.wikipedia.org/w/index.php?title=Formal%20methods&oldid=896120926
http://en.wikipedia.org/w/index.php?title=Formal%20methods&oldid=896120926
https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/21_Lessons_for_the_21st_Century
https://en.wikipedia.org/wiki/21_Lessons_for_the_21st_Century
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/New_Car_Assessment_Program
https://en.wikipedia.org/wiki/Production_part_approval_process
https://en.wikipedia.org/wiki/Production_part_approval_process
https://en.wikipedia.org/wiki/Reliability_engineering
https://en.wikipedia.org/wiki/Reliability_engineering
https://en.wikipedia.org/wiki/Trolley_problem

	Contents
	List of Figures
	List of Tables
	Introduction
	Research context
	Thesis outline

	State of the art overview
	Highly Automated Driving (HAD) application
	HAD software frameworks
	Feature analysis of HAD software frameworks
	Fault tolerance in HAD software frameworks

	Safety standards and concepts
	Fault models and monitoring techniques
	Device reliability
	ISO 26262 Road Vehicles - Functional safety
	ISO/PAS 21448 Road Vehicles - Safety of the intended functionality
	Security and safety
	Safety mechanisms and processes
	Scoping diagram of safety frameworks

	Software middleware
	Robot Operating System (ROS)
	Data Distribution Service (DDS)

	Operating Systems
	Xenomai: Time-critical applications on a Linux-based platform
	Operating-system-level virtualization
	Hardware virtualization
	Siemens Jailhouse: Linux-based partitioning hypervisor
	Green Hills INTEGRITY RTOS and Multivisor hypervisor
	QNX Neutrino RTOS and hypervisor

	Automotive hardware

	Problem statement
	Research methodology
	Safety Mechanism Design
	Software design goals
	Communication interfaces
	Distributed Safety Mechanism Architecture
	Apollo HAD software framework
	Inter-SoC partitioning of the HAD framework
	Intra-SoC partitioning using a hypervisor
	Distributed health monitors
	Distributed safety mechanism

	Experimental evaluation of the safety mechanism
	Comparison of AD simulators for End-to-End verification
	Experimental setup
	Performance characteristics of experimental setup
	Apollo HAD framework bandwidth
	End-to-End latency between DSM components

	Safety scenarios
	Fault injection experiment
	Experiment analysis

	Conclusion
	Future work
	Bibliography

