
6.3.X SocketCAN Device Drivers
include/nuttx/net/netdev.h. All structures and APIs needed to work with drivers are provided in this header
file. The structure struct net_driver_s defines the interface and is passed to the network
via netdev_register().

•

include/nuttx/can.h. CAN & CAN FD frame data structures.•
int netdev_register(FAR struct net_driver_s *dev, enum net_lltype_e lltype);. Each driver registers itself by
calling netdev_register().

•

extern const uint8_t can_dlc_to_len[16];
extern const uint8_t len_to_can_dlc[65];

Include/nuttx/net/can.h contains lookup tables for CAN dlc to CAN FD len sizes named•

up_netinitialize(void) is called on startup of NuttX in this function you call your own init function to
initialize your CAN driver

1.

In your own init function you create the net_driver_s structure set required init values and register the
required callbacks for SocketCAN

2.

Then you ensure that the CAN interface is in down mode (usually done by calling the d_ifdown
function)

3.

Register the net_driver_s using netdev_register4.

Initialization sequence is as follows•

Device generates interrupt1.
Process this interrupt in your interrupt handler2.
When a new CAN frame has been received you process this frame3.
When the CAN frame is a normal CAN frame you allocate the can_frame struct, when it's a CAN FD
frame you allocate a canfd_frame struct (note you can of course preallocate and just use the pointer).

4.

Copy the frame from the driver to the struct you've allocated in the previous step.5.
Point the net_driver_s d_buf pointer to the allocated can_frame6.

Call the can_input(FAR struct net_driver_s *dev) function include/nuttx/net/can.h7.

Receive sequence is as follows•

Socket layer executes d_txavail callback1.
A txavail function looks like this2.
static void driver_txavail(struct net_driver_s *dev)

{

 FAR struct driver_s *priv =
 (FAR struct driver *)dev->d_private;

 /* Ignore the notification if the interface is not yet up */

 net_lock();

 if (priv->bifup)

 {

 /* Check if there is room in the hardware to hold another outgoing

 * packet.

 */

 if (!txfull(priv))

 {

 /* No, there is space for another transfer. Poll the network

for

 * new XMIT data.

 */

 devif_poll(&priv->dev, s32k1xx_txpoll);

 }

Transmit sequence is as follows•

NuttX Porting guide
30 April, 2020 17:33

 UAVCAN Page 1

 }

 }

 net_unlock();

}

A txpoll looks like this3.
static int driver_txpoll(struct net_driver_s *dev)

{

 FAR struct driver_s *priv =

 (FAR struct driver_s *)dev->d_private;

 /* If the polling resulted in data that should be sent out on the

network,

 * the field d_len is set to a value > 0.

 */

 if (priv->dev.d_len > 0)

 {

 if (!devif_loopback(&priv->dev))

 {

 /* Send the packet */

 transmit(priv);

 /* Check if there is room in the device to hold another packet.

If

 * not, return a non-zero value to terminate the poll.

 */

 if (txfull(priv))

 {

 return -EBUSY;

 }

 }

 }

 /* If zero is returned, the polling will continue until all connections

 * have been examined.

 */

 return 0;

}

In your transmit(struct driver_s *priv) function you check the length of net_driver_s d_len
whether it matches the size of a can_frame struct or canfd_struct then you cast the content of the
net_driver_s d_buf pointer to the correct CAN frame struct

4.

Example: arch/arm/src/s32k1xx/s32k1xx_flexcan.c•

 UAVCAN Page 2

